3.1.10 Short Channel Effects

The degree of Vth V_{th} roll-off has been modeled through the characteristic field penetration (scl scl ), which is written in the unified FINFET model formulation, thus it can be used for FINFETs with complex cross sections.

scl=(EPSRSUBACHCINS)(1+ACHCINS2EPSRSUBWEFF_UFCMWEFF_UFCM) scl = \sqrt{\Big( \dfrac{EPSRSUB \cdot ACH}{CINS} \Big) \cdot \Big( 1 + \dfrac{ACH \cdot CINS}{2 \cdot EPSRSUB \cdot WEFF\_UFCM \cdot WEFF\_UFCM} \Big)}

(3.203) (3.203)

Vbi=kTqln(NSDiNBODYini2)(3.204) V_{bi} = \dfrac{kT}{q} \cdot ln \Big( \dfrac{NSD_i \cdot NBODY_i}{n_i^2} \Big) \qquad (3.204)

Heff=HFIN8(HFIN+2ϵratioEOT)(3.205) H_{eff} = \sqrt{\dfrac{HFIN}{8} \cdot \Big( HFIN + 2 \cdot \epsilon_{ratio} \cdot EOT \Big)} \qquad (3.205)

λ={(ϵratio2)(1+TFIN4ϵratioEOT)TFINEOTif GEOMOD = 01[(ϵratio2)(1+TFIN4ϵratioEOT)TFINEOT]1+14Heff2if GEOMOD = 10.5[(ϵratio2)(1+TFIN4ϵratioEOT)TFINEOT]1+14Heff2if GEOMOD = 2(ϵratio2)(1+R2ϵratioEOT)REOTif GEOMOD = 3 \lambda = \begin{cases} \sqrt{ \Big( \dfrac{\epsilon_{ratio}}{2} \Big) \cdot \Big( 1 + \dfrac{TFIN}{4 \cdot \epsilon_{ratio} \cdot EOT} \Big) \cdot TFIN \cdot EOT} &\text{if GEOMOD = 0} \\ \\ \dfrac{1}{\sqrt{ \Big[ \Big( \dfrac{\epsilon_{ratio}}{2} \Big) \cdot \Big( 1 + \dfrac{TFIN}{4 \cdot \epsilon_{ratio} \cdot EOT} \Big) \cdot TFIN \cdot EOT \Big]^{-1} + \dfrac{1}{4 \cdot H_{eff}^2} }} &\text{if GEOMOD = 1} \\ \\ \dfrac{0.5}{\sqrt{ \Big[ \Big( \dfrac{\epsilon_{ratio}}{2} \Big) \cdot \Big( 1 + \dfrac{TFIN}{4 \cdot \epsilon_{ratio} \cdot EOT} \Big) \cdot TFIN \cdot EOT \Big]^{-1} + \dfrac{1}{4 \cdot H_{eff}^2} }} &\text{if GEOMOD = 2} \\ \\ \sqrt{ \Big( \dfrac{\epsilon_{ratio}}{2} \Big) \cdot \Big( 1 + \dfrac{R}{2 \cdot \epsilon_{ratio} \cdot EOT} \Big) \cdot R \cdot EOT} &\text{if GEOMOD = 3} \end{cases}

(3.206) (3.206)

results matching ""

    No results matching ""