3.20.2 Drain Side Junction Current

Bias-independent calculations:

The bias-independent source side junction current, Isbd I_{sbd} , is determined as shown below:

Isbd=ADEJJsd(T)+PDEJJswd(T)+TFINNFINtotalJswgd(T)(3.567) I_{sbd} = ADEJ \cdot J_{sd}(T) + PDEJ \cdot J_{swd}(T) + TFIN \cdot NFIN_{total} \cdot J_{swgd}(T) \qquad (3.567)

NVtmd=kTqNJD(3.568) NV_{tmd} = \dfrac{kT}{q} \cdot NJD \qquad (3.568)

XExpBVD=exp(BVDNVtmd)XJBVD(3.569) XExpBVD = exp \Bigg( - \dfrac{BVD}{NV_{tmd}} \Bigg) \cdot XJBVD \qquad (3.569)

Tb=1+IJTHDFWDIsbdXExpBVD(3.570) T_b = 1 + \dfrac{IJTHDFWD}{I_{sbd}} - XExpBVD \qquad (3.570)

VjdmFwd=NVtmdln(Tb+Tb2+4XExpBVD2)(3.571) V_{jdmFwd} = NV_{tmd} \cdot ln \Bigg( \dfrac{T_b + \sqrt{ {T_b}^2 + 4 \cdot XExpBVD}}{2} \Bigg) \qquad (3.571)

T0=exp(VjdmFwdNVtmd)(3.572) T_0 = exp \Bigg( \dfrac{V_{jdmFwd}}{NV_{tmd}} \Bigg) \qquad (3.572)

IVjdmFwd=Isbd(T0XExpBVDT0+XExpBVD1)(3.573) IV_{jdmFwd} = I_{sbd} \Bigg( T_0 - \dfrac{XExpBVD}{T_0} + XExpBVD - 1 \Bigg) \qquad (3.573)

DslpFwd=IsbdNVtmd(T0+XExpBVDT0)(3.574) D_{slpFwd} = \dfrac{I_{sbd}}{NV_{tmd}} \cdot \Bigg( T_0 + \dfrac{XExpBVD}{T_0} \Bigg) \qquad (3.574)

VjdmRev=BVDNVtmdln[1XJBVD(IJTHDREVIsbd1)](3.575) V_{jdmRev} = -BVD - NV_{tmd} \cdot ln \Bigg[ \dfrac{1}{XJBVD} \cdot \Bigg( \dfrac{IJTHDREV}{I_{sbd}} - 1 \Bigg) \Bigg] \qquad (3.575)

T1=XJBVDexp(BVD+VjdmRevNVtmd)(3.576) T_1 = XJBVD \cdot exp \Bigg( - \dfrac{BVD + V_{jdmRev}}{NV_{tmd}} \Bigg) \qquad (3.576)

IVjdmRev=Isbd(1+T1)(3.577) IV_{jdmRev} = I_{sbd} \cdot (1 + T_1) \qquad (3.577)

DslpRev=IsbdT1NVtmd(3.578) D_{slpRev} = -I_{sbd} \cdot \dfrac{T_1}{NV_{tmd}} \qquad (3.578)


Bias-dependent calculations:

The bias dependent source side junction current, Ied I_{ed} , is determined as shown below:

If Ved<VjdmRev V_{ed} < V_{jdmRev} ,

Ied=[exp(VedNVtmd)1][IVjdmRev+DslpRev(VedVjdmRev)](3.579) I_{ed} = \Bigg[ exp \Bigg( \dfrac{V_{ed}}{NV_{tmd}} \Bigg) - 1 \Bigg] \cdot \Big[ IV_{jdmRev} + D_{slpRev} \cdot (V_{ed} - V_{jdmRev}) \Big] \qquad (3.579)

Else if VjdmRevVedVjdmFwd V_{jdmRev} \le V_{ed} \le V_{jdmFwd} ,

Ied=Isbd[exp(VedNVtmd)+XExpBVD1XJBVDexp(BVD+VedNVtmd)] I_{ed} = I_{sbd} \cdot \Bigg[ exp \Bigg( \dfrac{V_{ed}}{NV_{tmd}} \Bigg) + XExpBVD - 1 - XJBVD \cdot exp \Bigg( - \dfrac{BVD + V_{ed}}{NV_{tmd}} \Bigg) \Bigg]

(3.580) (3.580)

Else Ved>VjdmFwd V_{ed} > V_{jdmFwd} ,

Ied=IVjdmFwd+DslpFwd(VedVjdmFwd)(3.581) I_{ed} = IV_{jdmFwd} + D_{slpFwd} \cdot (V_{ed} - V_{jdmFwd}) \qquad (3.581)

Including drain side junction tunneling current:

Ied1=ADEJJtsd(T)×[exp(Ved/(kTNOM/q)/NJTSD(T)×VTSDmax(VTSDVed,VTSD103))1](3.582) \begin{aligned} I_{ed1} &= ADEJ \cdot J_{tsd}(T) \times \\ & \Bigg[ exp \Bigg( \dfrac{-V_{ed} / (k \cdot TNOM / q) / NJTSD(T) \times VTSD}{max(VTSD - V_{ed}, VTSD \cdot 10^{-3} )} \Bigg) - 1 \Bigg] \end{aligned} \qquad (3.582)

Ied2=PDEJJtsswd(T)×[exp(Ved/(kTNOM/q)/NJTSSWD(T)×VTSSWDmax(VTSSWDVed,VTSSWD103))1](3.583) \begin{aligned} I_{ed2} &= PDEJ \cdot J_{tsswd}(T) \times \\ & \Bigg[ exp \Bigg( \dfrac{-V_{ed} / (k \cdot TNOM / q) / NJTSSWD(T) \times VTSSWD}{max(VTSSWD - V_{ed}, VTSSWD \cdot 10^{-3} )} \Bigg) - 1 \Bigg] \end{aligned} \qquad (3.583)

Ied3=TFINNFINtotalJtsswgd(T)×[exp(Ved/(kTNOM/q)/NJTSSWGD(T)×VTSSWGDmax(VTSSWGDVed,VTSSWGD103))1](3.584) \begin{aligned} I_{ed3} &= TFIN \cdot NFIN_{total} \cdot J_{tsswgd}(T) \times \\ & \Bigg[ exp \Bigg( \dfrac{-V_{ed} / (k \cdot TNOM / q) / NJTSSWGD(T) \times VTSSWGD}{max(VTSSWGD - V_{ed}, VTSSWGD \cdot 10^{-3} )} \Bigg) - 1 \Bigg] \end{aligned} \qquad (3.584)

Ied=Ied(Ied1+Ied2+Ied3)(3.585) I_{ed} = I_{ed} - (I_{ed1} + I_{ed2} + I_{ed3}) \qquad (3.585)

results matching ""

    No results matching ""