3.17.1 Gate-to-Body Current

Igbinv I_{gbinv} and Igbacc I_{gbacc} are calculated only if IGBMOD=1 IGBMOD = 1 .

A=3.75956×107(3.512) A = 3.75956 \times 10^{-7} \qquad (3.512)

B=9.82222×1011(3.513) B = 9.82222 \times 10^{11} \qquad (3.513)

Vaux,igbinv=NIGBINVikTqln[1+exp(qiaEIGBINViNIGBINVikT/q)](3.514) V_{aux,igbinv} = NIGBINV_i \cdot \dfrac{kT}{q} \cdot ln \Bigg[ 1 + exp \Bigg( \dfrac{q_{ia} - EIGBINV_i}{NIGBINV_i \cdot kT/q} \Bigg) \Bigg] \qquad (3.514)

Igb,inv=Weff0LeffATox,ratioVgeVaux,igbinvIgtempNFINtotal×exp[BTOXG(AIGBINV(T)BIGBINViqia)×(1+CIGBINViqia)](3.515) \begin{aligned} I_{gb,inv} &= W_{eff0} \cdot L_{eff} \cdot A \cdot T_{ox,ratio} \cdot V_{ge} \cdot V_{aux,igbinv} \cdot I_{gtemp} \cdot NFIN_{total} \\ &\times exp \Big[ -B \cdot TOXG \cdot \Big( AIGBINV(T) - BIGBINV_i \cdot q_{ia} \Big) \\ &\times \Big( 1 + CIGBINV_i \cdot q_{ia} \Big) \Big] \end{aligned} \qquad (3.515)

A=4.97232×107(3.516) A = 4.97232 \times 10^{-7} \qquad (3.516)

B=7.45669×1011(3.517) B = 7.45669 \times 10^{11} \qquad (3.517)

Vfbzb=ΔϕEg/2ϕB(3.518) V_{fbzb} = \Delta \phi - E_g / 2 - \phi_B \qquad (3.518)

T0=VfbzbVge(3.519) T_0 = V_{fbzb} - V_{ge} \qquad (3.519)

T1=T00.02(3.520) T_1 = T_0 - 0.02 \qquad (3.520)

Vaux,igbacc=NIGBACCikTqln[1+exp(T0NIGBACCikT/q)](3.521) V_{aux,igbacc} = NIGBACC_i \cdot \dfrac{kT}{q} \cdot ln \Bigg[ 1 + exp \Bigg( \dfrac{T_0}{NIGBACC_i \cdot kT/q} \Bigg) \Bigg] \qquad (3.521)

Voxacc={qi,accfor BULKMOD=10.5[T1+T120.08Vfbzb]for BULKMOD1 and Vfbzb00.5[T1+T12+0.08Vfbzb]for BULKMOD1 and Vfbzb>0(3.522) V_{oxacc} = \begin{cases} q_{i,acc} &\text{for } BULKMOD = 1 \\ 0.5 \cdot \Big[ T_1 + \sqrt{ {T_1}^2 - 0.08 \cdot V_{fbzb}} \Big] &\text{for } BULKMOD \ne 1 \text{ and } V_{fbzb} \le 0 \\ 0.5 \cdot \Big[ T_1 + \sqrt{ {T_1}^2 + 0.08 \cdot V_{fbzb}} \Big] &\text{for } BULKMOD \ne 1 \text{ and } V_{fbzb} > 0 \end{cases} \qquad (3.522)

Igb,acc=Weff0LeffATox,ratioVgeVaux,igbaccIgtempNFINtotal×exp[BTOXG(AIGBACC(T)BIGBACCiVoxacc)×(1+CIGBACCiVoxacc)](3.523) \begin{aligned} I_{gb,acc} &= W_{eff0} \cdot L_{eff} \cdot A \cdot T_{ox,ratio} \cdot V_{ge} \cdot V_{aux,igbacc} \cdot I_{gtemp} \cdot NFIN_{total} \\ &\times exp \Big[ -B \cdot TOXG \cdot \Big( AIGBACC(T) - BIGBACC_i \cdot V_{oxacc} \Big) \\ &\times \Big( 1 + CIGBACC_i \cdot V_{oxacc} \Big) \Big] \end{aligned} \qquad (3.523)

For BULKMOD=1 BULKMOD = 1 , Igb I_{gb} simply flows from the gate into the substrate. For BULKMOD=0 BULKMOD = 0 , Igb I_{gb} mostly flows into the source because the potential barrier for holes is lower at the source, which has a lower potential. To ensure continuity when Vds switches sign, Igb I_{gb} is partitioned into a source component, Igbs I_{gbs} and a drain component, Igbd I_{gbd} using a partition function:

Igbs=(Igb,inv+Igb,acc)Wf(3.524) I_{gbs} = (I_{gb,inv} + I_{gb,acc}) \cdot W_f \qquad (3.524)

Igbd=(Igb,inv+Igb,acc)Wr(3.525) I_{gbd} = (I_{gb,inv} + I_{gb,acc}) \cdot W_r \qquad (3.525)

Wf W_f and Wr W_r are defined in Equations (3.216) and (3.217), respectively.

results matching ""

    No results matching ""