3.10 Body Effect Model

CAUTION: The above lateral non-uniform doping model or the body effect model are empirical and have their limits as to how much Vth V_{th} shift can be achieved without distorting the I-V curve. Over usage could lead to negative gm g_m or negative gds g_{ds} . For example, the lateral non-uniform doping model could be used in combination with the mobility model to achieve high Vth V_{th} shift between C-V and I-V curved to avoid any distortion of higher order derivatives.

The equations showing the determination of the bulk charge (qi_acc_for_QM) are provided next. This bulk charge is critical in terms of determination of the centroid of charge in the accumulation region.

If BULKMOD0 BULKMOD \ne 0 ,

T9=K1(2.0nVtm)Vtm(3.350) T_9 = \dfrac{K1}{(2.0 \cdot nV_{tm})} \sqrt{V_{tm}} \qquad (3.350)

T0=T92(3.351) T_0 = \dfrac{T_9}{2} \qquad (3.351)

T2=Vge(ΔϕEgVtm+ln(NBODYiNc)+DELVFBACC)Vtm(3.352) T_2 = \dfrac{V_{ge} - (\Delta \phi - E_g - V_{tm} + ln (\frac{NBODY_i}{N_c}) + DELVFBACC) }{V_{tm}} \qquad (3.352)

where Vge V_{ge} is the gate to substrate voltage.

The following equations calculate the accumulation charge and related quantities considering QM effects.

If (T2Vtm)>(ϕB+T9ϕBVtm) (T_2 \cdot V_{tm}) > (\phi_B + T_9 \cdot \sqrt{\phi_B \cdot V_{tm}}) ,

T1=T21.0+T0T0T0(3.353) T_1 = \sqrt{T_2 - 1.0 + T_0 \cdot T_0} - T_0 \qquad (3.353)

T10=1.0+T1T1(3.354) T_{10} = 1.0 + T_1 \cdot T_1 \qquad (3.354)

Else,

T3=0.5T23.0(1.0+T92)(3.355) T_3 = 0.5 \cdot T_2 - 3.0 \cdot \Big( 1.0 + \dfrac{T_9}{\sqrt{2}} \Big) \qquad (3.355)

T10=T3+T3T3+6T2(3.356) T_{10} = T_3 + \sqrt{T_3 \cdot T_3 + 6 \cdot T_2} \qquad (3.356)


If T2<0 T_2 < 0 ,

T4=T2T10T9(3.357) T_4 = \dfrac{T_2 - T_{10}}{T_9} \qquad (3.357)

T10=ln(1.0T10+T4T4)(3.358) T_{10} = -ln (1.0 - T_{10} + T_4 \cdot T_4) \qquad (3.358)

Else,

T11=exp(T10)(3.359) T_{11} = exp(-T_{10}) \qquad (3.359)

T4=T21.0+T11+T0T0T0(3.360) T_4 = \sqrt{T_2 - 1.0 + T_{11} + T_0 \cdot T_0} - T_0 \qquad (3.360)

T10=1.0T11+T4T4(3.361) T_{10} = 1.0 - T_{11} + T_4 \cdot T_4 \qquad (3.361)


T6=exp(T10)1.0(3.362) T_6 = exp(-T_{10}) - 1.0 \qquad (3.362)

T7=T6+T10(3.363) T_7 = \sqrt{T_6 + T_{10}} \qquad (3.363)


If T10>1015 T_{10} > 10^{-15} ,

e0=(T2T10)+T9T7(3.364) e_0 = -(T_2 - T_{10}) + T_9 \cdot T_7 \qquad (3.364)

e1=1.0T90.5T6T7(3.365) e_1 = 1.0 - T_9 \cdot 0.5 \cdot \dfrac{T_6}{T_7} \qquad (3.365)

T8=T10e0e1(3.366) T_8 = T_{10} - \dfrac{e_0}{e_1} \qquad (3.366)

T11=exp(T8)1.0(3.367) T_{11} = exp(-T_8) - 1.0 \qquad (3.367)

T12=T11+T8(3.368) T_{12} = \sqrt{T_{11} + T_8} \qquad (3.368)

qb_acc_s=T9+T12Vtm(3.369) qb\_acc\_s = -T_9 + T_{12} \cdot V_{tm} \qquad (3.369)

Else if T10<1015 T_{10} < -10^{-15} ,

e0=(T2T10)T9T7(3.370) e_0 = -(T_2 - T_{10}) - T_9 \cdot T_7 \qquad (3.370)

e1=1.0+T90.5T6T7(3.371) e_1 = 1.0 + T_9 \cdot 0.5 \cdot \dfrac{T_6}{T_7} \qquad (3.371)

T8=T10e0e1(3.372) T_8 = T_{10} - \dfrac{e_0}{e_1} \qquad (3.372)

T12=T9exp(T8)+T81.0(3.373) T_{12} = T_9 \cdot \sqrt{exp(-T_8) + T_8 - 1.0} \qquad (3.373)

Else,

T12=0.0(3.374) T_{12} = 0.0 \qquad (3.374)

T8=0.0(3.375) T_8 = 0.0 \qquad (3.375)

Then,

qb_acc_s=T12Vtm(3.376) qb\_acc\_s = T_{12} \cdot V_{tm} \qquad (3.376)


qi_acc_for_QM=T9exp(T82)Vtm(3.377) qi\_acc\_for\_QM = T_9 \cdot exp \Big( \dfrac{-T_8}{2} \Big) \cdot V_{tm} \qquad (3.377)

qb_acc_d=qb_acc_s(3.378) qb\_acc\_d = qb\_acc\_s \qquad (3.378)

psipclamp=0.5(T8+1.0+(T81.0)(T81.0)+0.252.02.0)(3.379) psipclamp = 0.5 \cdot (T_8 + 1.0 + \sqrt{(T_8 - 1.0) \cdot (T_8 - 1.0) + 0.25 \cdot 2.0 \cdot 2.0}) \qquad (3.379)

sqrtpsip=psiclamp(3.380) sqrtpsip = \sqrt{psiclamp} \qquad (3.380)

nq=1.0+T9sqrtpsip(3.381) nq = 1.0 + \dfrac{T_9}{sqrtpsip} \qquad (3.381)

results matching ""

    No results matching ""