3.7.4 Charge Centroid Calculation for Accumulation

T6=1+(qi,accQM0ACC)PQMACC(3.337) T_6 = 1 + \Bigg( \dfrac{q_{i,acc}}{QM0ACC} \Bigg)^{PQMACC} \qquad (3.337)

Cox,acc={3.9ϵ0[TOXP3.9EPSROX+TcenQMTCENCViϵratio]if GEOMOD33.9ϵ0R[1ϵratioln(RRTcen)+3.9EPSROXln(1+ToxpR)]if GEOMOD=3 C_{ox,acc} = \begin{cases} \dfrac{3.9 \cdot \epsilon_0}{\Bigg[ TOXP \cdot \dfrac{3.9}{EPSROX} + T_{cen} \cdot \dfrac{QMTCENCV_i}{\epsilon_{ratio}} \Bigg]} &\text{if } GEOMOD \ne 3 \\ \\ \dfrac{3.9 \cdot \epsilon_0}{R \cdot \Bigg[ \dfrac{1}{\epsilon_{ratio}} \cdot ln \Bigg( \dfrac{R}{R - T_{cen}} \Bigg) + \dfrac{3.9}{EPSROX} \cdot ln \Bigg( 1 + \dfrac{T_{oxp}}{R} \Bigg) \Bigg]} &\text{if } GEOMOD = 3 \end{cases}

(3.338) (3.338)

If QMTCENCVi=0 QMTCENCV_i = 0 ,

Cox,eff=Cox(3.339) C_{ox,eff} = C_{ox} \qquad (3.339)

Cox,acc=3.9ϵ0EOTACC(3.340) C_{ox,acc} = \dfrac{3.9 \cdot \epsilon_0}{EOTACC} \qquad (3.340)

If QMTCENCVi>0 QMTCENCV_i > 0 ,

T4=qiaQM0(3.341) T_4 = \dfrac{q_{ia}}{QM0} \qquad (3.341)

T5=1+T4PQM(3.342) T_5 = 1 + T_4^{PQM} \qquad (3.342)

Tcen=Tcen0T5(3.343) T_{cen} = \dfrac{T_{cen0}}{T_5} \qquad (3.343)

Cox,eff=1[1CoxEOTTOXP+TcenQMTCENCViϵsub](3.344) C_{ox,eff} = \dfrac{1}{\Bigg[ \dfrac{1}{C_{ox} \cdot \frac{EOT}{TOXP}} + \dfrac{T_{cen} \cdot QMTCENCV_i}{\epsilon_{sub}} \Bigg]} \qquad (3.344)

Here, Cox,eff C_{ox,eff} is the effective oxide capacitance taking QM effects into account for Vgs>Vfb V_{gs} > V_{fb} and Cox,acc C_{ox,acc} is the effective oxide capacitance taking QM effects into account for Vgs<Vfb V_{gs} < V_{fb} .

results matching ""

    No results matching ""