3.22.1 Flicker Noise Model

Esat,noi=2VSATiμeff(3.621) E_{sat,noi} = \dfrac{2 VSAT_i}{\mu_{eff}} \qquad (3.621)

Leff,noi=Leff2LINTNOI(3.622) L_{eff,noi} = L_{eff} - 2 \cdot LINTNOI \qquad (3.622)

ΔLclm=lln[1Esat,noi(VdsVdseffl+EM)](3.623) \Delta L_{clm} = l \cdot ln \Bigg[ \dfrac{1}{E_{sat,noi}} \cdot \Bigg( \dfrac{V_{ds} - V_{dseff}}{l} + EM \Bigg) \Bigg] \qquad (3.623)

N0=Coxeqisq(3.624) N_0 = \dfrac{C_{oxe} \cdot q_{is}}{q} \qquad (3.624)

Nl=Coxeqidq(3.625) N_l = \dfrac{C_{oxe} \cdot q_{id}}{q} \qquad (3.625)

N=kTq2(Coxe+CITi)(3.626) N^{*} = \dfrac{kT}{q^2} \cdot (C_{oxe} + CIT_i) \qquad (3.626)

FN1=NOIAln(N0+NNl+N)+NOIB(N0Nl)+NOIC2(N02Nl2)(3.627) FN1 = NOIA \cdot ln \Bigg( \dfrac{N_0 + N^{*}}{N_l + N^{*}} \Bigg) + NOIB \cdot (N_0 - N_l) + \dfrac{NOIC}{2} (N_0^2 - N_l^2) \qquad (3.627)

FN2=NOIA+NOIBNl+NOICNl2(Nl+N)2(3.628) FN2 = \dfrac{NOIA + NOIB \cdot N_l + NOIC \cdot {N_l}^2}{(N_l + N^{*})^2} \qquad (3.628)

Ssi=kTq2μeffIdsCoxeLeff,noi2fEF1010FN1+kTIds2ΔLclmWeffNFINtotalLeff,noi2fEF1010FN2 S_{si} = \dfrac{kT \cdot q^2 \cdot \mu_{eff} \cdot I_{ds}}{C_{oxe} \cdot L_{eff,noi}^2 \cdot f^{EF} \cdot 10^{10}} \cdot FN1 + \dfrac{kT \cdot I_{ds}^2 \cdot \Delta L_{clm}}{W_{eff} \cdot NFIN_{total} \cdot L_{eff,noi}^2 \cdot f^{EF} \cdot 10^{10}} \cdot FN2

(3.629) (3.629)

Swi=NOIAkTIds2WeffNFINtotalLeff,noifEFN21010(3.630) S_{wi} = \dfrac{NOIA \cdot kT \cdot I_{ds}^2}{W_{eff} \cdot NFIN_{total} \cdot L_{eff,noi} \cdot f^{EF} \cdot {N^{*}}^2 \cdot 10^{10}} \qquad (3.630)

Sid,flicker=SwiSsiSwi+Ssi(3.631) S_{id,flicker} = \dfrac{S_{wi} \cdot S_{si}}{S_{wi} + S_{si}} \qquad (3.631)

results matching ""

    No results matching ""