6 Local Parameter Extraction for CV-IV

This procedure shows how to extract parameters for I-V and C-V fittings for device with a particular channel length. The procedure can be followed for both long and short channel devices for local fitting. In the future we plan to expand this section to include the global parameter extraction for the C-V part, as done for the I-V part in the previous section.

The complete CV-IV fitting procedure consists of 7 steps. The procedure starts with fitting CggVgs C_{gg}-V_{gs} data at low Vds V_{ds} (50mV) to extract PHIG PHIG , NSUB NSUB , EOT EOT and quantum mechanical effects related parameters. These parameters are used to fit I-V data at low Vds V_{ds} (50mV) to extract subthreshold I-V and mobility related parameters. The extracted parameters are utilized to fit the I-V data at high Vds V_{ds} (1V), to extract parameters related to Vth V_{th} shift due to DIBL, Vds V_{ds} dependence of subthreshold slope, and velocity saturation. In the next step, IdsVds I_{ds}-V_{ds} data at various Vgs V_{gs} are fitted to extract parameters related to DIBL, output conductance and CLM.

Since the saturation parameters are already extracted in Step 3, we can use CggVgs C_{gg}-V_{gs} data at high Vds V_{ds} (1V) to extract parameters related to CLM for the C-V part. All 7 steps are summarized in the following table with description of the data used, bias conditions and list of extracted parameters with which part of data they affect.


Figure 21

Figure 21: Fitting results from a self-consistent IV-CV extraction.


CV-IV procedure applicable for devices with any channel length

Step Data Used Bias Parameters Extracted (Quantities Influenced)
0 - - Initialize process and model control parameters such as DEVTYPE DEVTYPE , HFIN HFIN , TFIN TFIN , FPITCH FPITCH , NFIN NFIN , NF NF , ASEO ASEO , ADEO ADEO , L L , XL XL , LINT LINT , DLC DLC , GEOMOD GEOMOD etc.
1 CggVgs C_{gg}-V_{gs} Vds V_{ds} = 50 mV PHIG PHIG (Vfb=Vth V_{fb} = V_{th} ), NSUB NSUB (steepens C-V slope), EOT EOT , QMTCENCV QMTCENCV (capacitance value at high Vgs V_{gs} ), QM0 QM0 , ETAQM ETAQM , ALPHAQM ALPHAQM (lowers slope steepness), CFS CFS , CFD CFD (parasitic capacitance parameters as needed)
2 IdsVgs I_{ds}-V_{gs} , gm g_m Vds V_{ds} = 50 mV CDSC CDSC (subthreshold slope), CS CS (subthreshold Ids I_{ds} ), U0 U0 (low field mobility), MUE MUE (mobility at moderate Vgs V_{gs} ), THETMU THETMU (mobility at high Vgs V_{gs} ), ETAMOB ETAMOB (sharpness of gm g_m curve)
3 IdsVgs I_{ds}-V_{gs} , gm g_m Vds V_{ds} = 1 V CDSCD CDSCD (Vds V_{ds} dependence of subthreshold slope), ETA0 ETA0 , DSUB DSUB (Vth V_{th} shift due to DIBL at high Vds V_{ds} ), VSAT VSAT , KSATIV KSATIV (Ids I_{ds} , gm g_m at moderate Vgs V_{gs} ), VSAT1 VSAT1 (saturation current at high Vgs V_{gs} ), PTWG PTWG (gm g_m at high Vgs V_{gs} )
4 IdsVds I_{ds}-V_{ds} , gds g_{ds} Various Vgs V_{gs} (0-1 V) PCLMG PCLMG , PCLM PCLM (Ids I_{ds} , gds g_{ds} at high Vds V_{ds} ), MEXP MEXP , VSAT1 VSAT1 (optimize by looping between Step 3 and 4)
5 CggVgs C_{gg}-V_{gs} Vds V_{ds} = 1 V PCLMCV PCLMCV (Cgg C_{gg} value at high Vgs V_{gs} ), PCLMGCV PCLMGCV (Cgg C_{gg} curvature at high Vgs V_{gs} )
6 CsgVgs C_{sg}-V_{gs} Vds V_{ds} = 50 mV Step 1 ensures good fit of Csg C_{sg} at low Vds V_{ds}
7 CsgVgs C_{sg}-V_{gs} Vds V_{ds} = 50 mV Under investigation.

results matching ""

    No results matching ""