3.1.2 Effective Channel Width, Channel Length and Fin Nuember

ΔL=LINT+LL(L+XL)LLN(3.11) \Delta L = LINT + \frac{LL}{(L + XL)^{LLN}} \qquad (3.11)

Leff=L+XL2ΔL(3.12) L_{eff} = L + XL - 2 \Delta L \qquad (3.12)

Here, ΔL\Delta L is the overlap/underlap between the gate and the source/drain diffusions; LINTLINT is the ΔL\Delta L for large devices; LL is the designed (drawn) length; XLXL is the length variation due to the process effects; LLLL and LLNLLN are the fitting parameters.

ΔLCV=DLC+LLC(L+XL)LLN(3.13) \Delta L_{CV} = DLC + \frac{LLC}{(L + XL)^{LLN}} \qquad (3.13)

Leff,CV=L+XL2ΔLCV(3.14) L_{eff, CV} = L + XL - 2 \Delta L_{CV} \qquad (3.14)

Here, ΔLCV\Delta L_{CV} is the overlap/underlap between the gate and the source/drain diffusions for C-V calculations; DLCDLC is the ΔLCV\Delta L_{CV} for large devices; LLCLLC is a fitting parameter.

If BULKMOD=1BULKMOD = 1 and CAPMOD=1CAPMOD = 1 then

Leff,CV,acc=Leff,CVDLCACC(3.15) L_{eff,CV,acc} = L_{eff,CV} - DLCACC \qquad (3.15)

If GEOMOD=0GEOMOD = 0 then

Weff0=2HFINDELTAW(3.16) W_{eff0} = 2 \cdot HFIN - DELTAW \qquad (3.16)

Weff,CV0=2HFINDELTAWCV(3.17) W_{eff,CV0} = 2 \cdot HFIN - DELTAWCV \qquad (3.17)

If GEOMOD=1GEOMOD = 1 then

Weff0=2HFIN+FECHTFINDELTAW(3.18) W_{eff0} = 2 \cdot HFIN + FECH \cdot TFIN - DELTAW \qquad (3.18)

Weff,CV0=2HFIN+FECHTFINDELTAWCV(3.19) W_{eff,CV0} = 2 \cdot HFIN + FECH \cdot TFIN - DELTAWCV \qquad (3.19)

If GEOMOD=2GEOMOD = 2 then

Weff0=2HFIN+2FECHTFINDELTAW(3.20) W_{eff0} = 2 \cdot HFIN + 2 \cdot FECH \cdot TFIN - DELTAW \qquad (3.20)

Weff,CV0=2HFIN+2FECHTFINDELTAWCV(3.21) W_{eff,CV0} = 2 \cdot HFIN + 2 \cdot FECH \cdot TFIN - DELTAWCV \qquad (3.21)

If GEOMOD=3GEOMOD = 3 then

R=D2(3.22) R = \frac{D}{2} \qquad (3.22)

Weff0=πDDELTAW(3.23) W_{eff0} = \pi \cdot D - DELTAW \qquad (3.23)

Weff,CV0=πDDELTAWCV(3.24) W_{eff,CV0} = \pi \cdot D - DELTAWCV \qquad (3.24)

NFINtotal=NFINNF(3.25) NFIN_{total} = NFIN \cdot NF \qquad (3.25)

If BULKMOD0BULKMOD \ne 0,

COXACC=COXEOTEOTACC(3.26) COX_{ACC} = COX \cdot \frac{EOT}{EOTACC} \qquad (3.26)


Case GEOMOD=0GEOMOD = 0 (double gate):

If the values of TFIN_TOPTFIN\_TOP (top fin thickness of a trapezoidal FinFET) or TFIN_BASETFIN\_BASE (base fin thickness of a trapezoidal FinFET) are provided as the model parameters and not passed as the instance parameters,

W_UFCM=2HFIN(3.27) W\_UFCM = 2 \cdot HFIN \qquad (3.27)

ACH_UFCM=HFINTFIN(3.28) ACH\_UFCM = HFIN \cdot TFIN \qquad (3.28)

If the values of TFIN_TOPTFIN\_TOP and TFIN_BASETFIN\_BASE are overwritten by the instance parameters passed from the netlist,

W_UFCM=2HFIN2+14(TFIN_TOPTFIN_BASE)2(3.29) W\_UFCM = 2 \cdot \sqrt{HFIN^2 + \frac{1}{4} \cdot (TFIN\_TOP - TFIN\_BASE)^2} \qquad (3.29)

ACH_UFCM=HFIN(TFIN_TOP+TFIN_BASE2)(3.30) ACH\_UFCM = HFIN \cdot (\frac{TFIN\_TOP + TFIN\_BASE}{2}) \qquad (3.30)

In both cases,

CINS_UFCM=W_UFCMEPSROXϵ0EOT(3.31) CINS\_UFCM = W\_UFCM \cdot EPSROX \cdot \frac{\epsilon_0}{EOT} \qquad (3.31)

rc=2CINS_UFCMW_UFCM2(ϵsubACH_UFCM)(3.32) rc = \frac{2 \cdot CINS\_UFCM}{W\_UFCM^2 \cdot \Big( \dfrac{\epsilon_{sub}}{ACH\_UFCM} \Big)} \qquad (3.32)

qdep=qNBODYiACH_UFCMCINS_UFCM(3.33) qdep = -q \cdot NBODY_i \cdot \frac{ACH\_UFCM}{CINS\_UFCM} \qquad (3.33)


Case GEOMOD=1GEOMOD = 1 (triple gate):

If the values of TFIN_TOPTFIN\_TOP or TFIN_BASETFIN\_BASE are provided as the model parameters and not passed as the instance parameters,

W_UFCM=2HFIN+TFIN(3.34) W\_UFCM = 2 \cdot HFIN + TFIN \qquad (3.34)

ACH_UFCM=HFINTFIN(3.35) ACH\_UFCM = HFIN \cdot TFIN \qquad (3.35)

If the values of TFIN_TOPTFIN\_TOP and TFIN_BASETFIN\_BASE are overwritten by the instance parameters passed from the netlist,

W_UFCM=2HFIN2+14(TFIN_TOPTFIN_BASE)2(3.36)+TFIN_TOP \begin{aligned} W\_UFCM &= 2 \cdot \sqrt{HFIN^2 + \frac{1}{4} \cdot (TFIN\_TOP - TFIN\_BASE)^2} \qquad (3.36) \\ \\ &+ TFIN\_TOP \end{aligned}

ACH_UFCM=HFIN(TFIN_TOP+TFIN_BASE2)(3.37) ACH\_UFCM = HFIN \cdot (\frac{TFIN\_TOP + TFIN\_BASE}{2}) \qquad (3.37)

In both cases,

CINS_UFCM=W_UFCMEPSROXϵ0EOT(3.38) CINS\_UFCM = W\_UFCM \cdot EPSROX \cdot \frac{\epsilon_0}{EOT} \qquad (3.38)

rc=2CINS_UFCMW_UFCM2(ϵsubACH_UFCM)(3.39) rc = \frac{2 \cdot CINS\_UFCM}{W\_UFCM^2 \cdot \Big( \dfrac{\epsilon_{sub}}{ACH\_UFCM} \Big) } \qquad (3.39)

qdep=qNBODYiACH_UFCMCINS_UFCM(3.40) qdep = -q \cdot NBODY_i \cdot \frac{ACH\_UFCM}{CINS\_UFCM} \qquad (3.40)


Case GEOMOD=2GEOMOD = 2 (quadruple gate):

If the values of TFIN_TOPTFIN\_TOP or TFIN_BASETFIN\_BASE are provided as the model parameters and not passed as the instance parameters,

W_UFCM=2HFIN+2TFIN(3.41) W\_UFCM = 2 \cdot HFIN + 2 \cdot TFIN \qquad (3.41)

ACH_UFCM=HFINTFIN(3.42) ACH\_UFCM = HFIN \cdot TFIN \qquad (3.42)

If the values of TFIN_TOPTFIN\_TOP and TFIN_BASETFIN\_BASE are overwritten by the instance parameters passed from the netlist,

W_UFCM=2HFIN2+14(TFIN_TOPTFIN_BASE)2(3.43)+(TFIN_TOP+TFIN_BASE) \begin{aligned} W\_UFCM &= 2 \cdot \sqrt{HFIN^2 + \frac{1}{4} \cdot (TFIN\_TOP - TFIN\_BASE)^2} \qquad (3.43) \\ \\ &+ (TFIN\_TOP + TFIN\_BASE) \end{aligned}

ACH_UFCM=HFIN(TFIN_TOP+TFIN_BASE2)(3.44) ACH\_UFCM = HFIN \cdot (\frac{TFIN\_TOP + TFIN\_BASE}{2}) \qquad (3.44)

In both cases,

CINS_UFCM=W_UFCMEPSROXϵ0EOT(3.45) CINS\_UFCM = W\_UFCM \cdot EPSROX \cdot \frac{\epsilon_0}{EOT} \qquad (3.45)

rc=2CINS_UFCMW_UFCM2(ϵsubACH_UFCM)(3.46) rc = \frac{2 \cdot CINS\_UFCM}{W\_UFCM^2 \cdot \Big( \dfrac{\epsilon_{sub}}{ACH\_UFCM} \Big) } \qquad (3.46)

qdep=qNBODYiACH_UFCMCINS_UFCM(3.47) qdep = -q \cdot NBODY_i \cdot \frac{ACH\_UFCM}{CINS\_UFCM} \qquad (3.47)


Case GEOMOD=3GEOMOD = 3 (cylindrical gate):

If the values of TFIN_TOPTFIN\_TOP or TFIN_BASETFIN\_BASE are provided as the model parameters and not passed as the instance parameters,

W_UFCM=πD(3.48) W\_UFCM = \pi \cdot D \qquad (3.48)

CINS_UFCM=2πEPSROXϵ0loge1+2EOTD(3.49) CINS\_UFCM = 2 \cdot \pi \cdot EPSROX \cdot \frac{\epsilon_0}{\log_e1 + 2 \cdot \frac{EOT}{D}} \qquad (3.49)

ACH_UFCM=πDD4(3.50) ACH\_UFCM = \pi \cdot D \cdot \frac{D}{4} \qquad (3.50)

rc=2CINS_UFCMW_UFCM2(ϵsubACH_UFCM)(3.51) rc = \frac{2 \cdot CINS\_UFCM}{W\_UFCM^2 \cdot \Big( \dfrac{\epsilon_{sub}}{ACH\_UFCM} \Big) } \qquad (3.51)

qdep=qNBODYiACH_UFCMCINS_UFCM(3.52) qdep = -q \cdot NBODY_i \cdot \frac{ACH\_UFCM}{CINS\_UFCM} \qquad (3.52)


Case GEOMOD=4GEOMOD = 4 (unified model):

rc=2CINS_UFCMW_UFCM2(ϵsubACH_UFCM)(3.53) rc = \frac{2 \cdot CINS\_UFCM}{W\_UFCM^2 \cdot \Big( \dfrac{\epsilon_{sub}}{ACH\_UFCM} \Big) } \qquad (3.53)

qdep=qNBODYiACH_UFCMCINS_UFCM(3.54) qdep = -q \cdot NBODY_i \cdot \frac{ACH\_UFCM}{CINS\_UFCM} \qquad (3.54)

Cox=CINS_UFCMW_UFCM(3.55) C_{ox} = \frac{CINS\_UFCM}{W\_UFCM} \qquad (3.55)

results matching ""

    No results matching ""