3.1.2 Effective Channel Width, Channel Length and Fin Nuember
ΔL=LINT+(L+XL)LLNLL(3.11)
Leff=L+XL−2ΔL(3.12)
Here, ΔL is the overlap/underlap between the gate and the source/drain diffusions; LINT is the ΔL for large devices; L is the designed (drawn) length; XL is the length variation due to the process effects; LL and LLN are the fitting parameters.
ΔLCV=DLC+(L+XL)LLNLLC(3.13)
Leff,CV=L+XL−2ΔLCV(3.14)
Here, ΔLCV is the overlap/underlap between the gate and the source/drain diffusions for C-V calculations; DLC is the ΔLCV for large devices; LLC is a fitting parameter.
If BULKMOD=1 and CAPMOD=1 then
Leff,CV,acc=Leff,CV−DLCACC(3.15)
If GEOMOD=0 then
Weff0=2⋅HFIN−DELTAW(3.16)
Weff,CV0=2⋅HFIN−DELTAWCV(3.17)
If GEOMOD=1 then
Weff0=2⋅HFIN+FECH⋅TFIN−DELTAW(3.18)
Weff,CV0=2⋅HFIN+FECH⋅TFIN−DELTAWCV(3.19)
If GEOMOD=2 then
Weff0=2⋅HFIN+2⋅FECH⋅TFIN−DELTAW(3.20)
Weff,CV0=2⋅HFIN+2⋅FECH⋅TFIN−DELTAWCV(3.21)
If GEOMOD=3 then
R=2D(3.22)
Weff0=π⋅D−DELTAW(3.23)
Weff,CV0=π⋅D−DELTAWCV(3.24)
NFINtotal=NFIN⋅NF(3.25)
If BULKMOD≠0,
COXACC=COX⋅EOTACCEOT(3.26)
Case GEOMOD=0 (double gate):
If the values of TFIN_TOP (top fin thickness of a trapezoidal FinFET) or TFIN_BASE (base fin thickness of a trapezoidal FinFET) are provided as the model parameters and not passed as the instance parameters,
W_UFCM=2⋅HFIN(3.27)
ACH_UFCM=HFIN⋅TFIN(3.28)
If the values of TFIN_TOP and TFIN_BASE are overwritten by the instance parameters passed from the netlist,
W_UFCM=2⋅√HFIN2+41⋅(TFIN_TOP−TFIN_BASE)2(3.29)
ACH_UFCM=HFIN⋅(2TFIN_TOP+TFIN_BASE)(3.30)
In both cases,
CINS_UFCM=W_UFCM⋅EPSROX⋅EOTϵ0(3.31)
rc=W_UFCM2⋅(ACH_UFCMϵsub)2⋅CINS_UFCM(3.32)
qdep=−q⋅NBODYi⋅CINS_UFCMACH_UFCM(3.33)
Case GEOMOD=1 (triple gate):
If the values of TFIN_TOP or TFIN_BASE are provided as the model parameters and not passed as the instance parameters,
W_UFCM=2⋅HFIN+TFIN(3.34)
ACH_UFCM=HFIN⋅TFIN(3.35)
If the values of TFIN_TOP and TFIN_BASE are overwritten by the instance parameters passed from the netlist,
W_UFCM=2⋅√HFIN2+41⋅(TFIN_TOP−TFIN_BASE)2(3.36)+TFIN_TOP
ACH_UFCM=HFIN⋅(2TFIN_TOP+TFIN_BASE)(3.37)
In both cases,
CINS_UFCM=W_UFCM⋅EPSROX⋅EOTϵ0(3.38)
rc=W_UFCM2⋅(ACH_UFCMϵsub)2⋅CINS_UFCM(3.39)
qdep=−q⋅NBODYi⋅CINS_UFCMACH_UFCM(3.40)
Case GEOMOD=2 (quadruple gate):
If the values of TFIN_TOP or TFIN_BASE are provided as the model parameters and not passed as the instance parameters,
W_UFCM=2⋅HFIN+2⋅TFIN(3.41)
ACH_UFCM=HFIN⋅TFIN(3.42)
If the values of TFIN_TOP and TFIN_BASE are overwritten by the instance parameters passed from the netlist,
W_UFCM=2⋅√HFIN2+41⋅(TFIN_TOP−TFIN_BASE)2(3.43)+(TFIN_TOP+TFIN_BASE)
ACH_UFCM=HFIN⋅(2TFIN_TOP+TFIN_BASE)(3.44)
In both cases,
CINS_UFCM=W_UFCM⋅EPSROX⋅EOTϵ0(3.45)
rc=W_UFCM2⋅(ACH_UFCMϵsub)2⋅CINS_UFCM(3.46)
qdep=−q⋅NBODYi⋅CINS_UFCMACH_UFCM(3.47)
Case GEOMOD=3 (cylindrical gate):
If the values of TFIN_TOP or TFIN_BASE are provided as the model parameters and not passed as the instance parameters,
W_UFCM=π⋅D(3.48)
CINS_UFCM=2⋅π⋅EPSROX⋅loge1+2⋅DEOTϵ0(3.49)
ACH_UFCM=π⋅D⋅4D(3.50)
rc=W_UFCM2⋅(ACH_UFCMϵsub)2⋅CINS_UFCM(3.51)
qdep=−q⋅NBODYi⋅CINS_UFCMACH_UFCM(3.52)
Case GEOMOD=4 (unified model):
rc=W_UFCM2⋅(ACH_UFCMϵsub)2⋅CINS_UFCM(3.53)
qdep=−q⋅NBODYi⋅CINS_UFCMACH_UFCM(3.54)
Cox=W_UFCMCINS_UFCM(3.55)