3.4.2 Voltage Limiting for Accumulation

If GEOMOD3 GEOMOD \ne 3 then,

T0=[ΔVt,QM+(nKTq)ln(2LeffIMINμ0(T)WeffnkTNcTFIN)](3.265) T_0 = - \Bigg[ \Delta V_{t,QM} + \Big( \dfrac{nKT}{q} \Big) \cdot ln \Big( \dfrac{2 \cdot L_{eff} \cdot IMIN}{\mu_0(T) \cdot W_{eff} \cdot nkT \cdot N_c \cdot TFIN} \Big) \Bigg] \qquad (3.265)

T1=Vgsfb+T0+DELVTRAND(3.266) T_1 = V_{gsfb} + T_0 + DELVTRAND \qquad (3.266)

Vgsfbeff=12[T1+T12+4×108]T0(3.267) V_{gsfbeff} = \dfrac{1}{2} \Big[ T_1 + \sqrt{ T_1^2 + 4 \times 10^{-8}} \Big] - T_0 \qquad (3.267)

If GEOMOD=3 GEOMOD = 3 then,

T0=[ΔVt,QM+(nKTq)ln(2LeffIMINμ0(T)WeffnkTniR)](3.268) T_0 = - \Bigg[ \Delta V_{t,QM} + \Big( \dfrac{nKT}{q} \Big) \cdot ln \Big( \dfrac{2 \cdot L_{eff} \cdot IMIN}{\mu_0(T) \cdot W_{eff} \cdot nkT \cdot n_i \cdot R} \Big) \Bigg] \qquad (3.268)

T1=Vgsfb+T0+nϕB+Eg2+DELVTRAND(3.269) T_1 = V_{gsfb} + T_0 + n \cdot \phi_B + \dfrac{E_g}{2} + DELVTRAND \qquad (3.269)

Vgsfbeff=12[T1+T12+4×108]T0Vt0(3.270) V_{gsfbeff} = \dfrac{1}{2} \Big[ T_1 + \sqrt{ T_1^2 + 4 \times 10^{-8}} \Big] - T_0 - V_{t0} \qquad (3.270)

results matching ""

    No results matching ""