3.1.8 Temperature Effects

T=$temperature+DTEMP(3.101) T = \$temperature + DTEMP \qquad (3.101)

The functional form of temperature dependence of parameters fall in two categories:

Type A:

PARAM[T]=PARAM[L][1±PARAMT(TTNOM)](3.102) PARAM[T] = PARAM[L] \cdot [1 \pm PARAM_T \cdot (T - TNOM)] \qquad (3.102)

Type B:

PARAM[T]=PARAM[L]±PARAMT(TTNOM)(3.103) PARAM[T] = PARAM[L] \pm PARAM_T \cdot (T - TNOM) \qquad (3.103)

where PARAMT PARAM_T is a model temperature coefficient. BSIM-CMG allows users the option to change the functional form of temperature dependence of a group of selected parameters via temperature selector switch TEMPMOD TEMPMOD .

TEMPMOD=0 TEMPMOD = 0 is the default temperature dependence of the parameter expressed in the following equations. Selecting TEMPMOD=1 TEMPMOD = 1 changes the Type A functional forms to Type B for following parameters: UC UC , ETA0 ETA0 , ETA0R ETA0R , ETAMOB ETAMOB , VSAT VSAT , VSAT1 VSAT1 , VSATR VSATR , VSATCV VSATCV , RSDR RSDR , RDDR RDDR , PTWG PTWG , PTWGR PTWGR , K0 K0 , K1S1 K1S1 , K0S1 K0S1 , K1 K1 , K1SAT K1SAT , A1 A1 , A2 A2 , AIGBINV AIGBINV , AIGBACC AIGBACC , AIGC AIGC , AIGS AIGS , AIGD AIGD , BGIDL BGIDL , BGISL BGISL , ALPHA0 ALPHA0 , ALPHA1 ALPHA1 , ALPHAII0 ALPHAII0 , ALPHAII1 ALPHAII1 , CJS CJS , CJD CJD , CJSWS CJSWS , CJSWD CJSWD , CJSWGS CJSWGS , CJSWGD CJSWGD , PBS PBS , PBD PBD , PBSWS PBSWS , PBSWD PBSWD , PBSWGS PBSWGS , PBSWGD PBSWGD .

Eg,TNOM=BG0SUBTBGASUBTNOM2TNOM+TBGBSUB(3.104) E_{g,TNOM} = BG0SUB - \dfrac{TBGASUB \cdot TNOM^2}{TNOM + TBGBSUB} \qquad (3.104)

Eg=BG0SUBTBGASUBT2T+TBGBSUB(3.105) E_g = BG0SUB - \dfrac{TBGASUB \cdot T^2}{T + TBGBSUB} \qquad (3.105)

ni=NI0SUB(T300.15)32exp(BG0SUBq2k300.15Egq2kT)(3.106) n_i = NI0SUB \cdot { \Big( \dfrac{T}{300.15} \Big)}^{\tfrac{3}{2}} \cdot exp \Big( \dfrac{BG0SUB \cdot q}{2 k \cdot 300.15} - \dfrac{E_g \cdot q}{2 k \cdot T} \Big) \qquad (3.106)

Nc=NC0SUB(T300.15)32(3.107) N_c = NC0SUB \cdot { \Big( \dfrac{T}{300.15} \Big)}^{\tfrac{3}{2}} \qquad (3.107)

ΘSS=1+TSSi(TTNOM)(3.108) \Theta_{SS} = 1 + TSS_i \cdot (T - TNOM) \qquad (3.108)

Vbi=kTqln(NSDNBODYi[N]ni2)(3.109) V_{bi} = \dfrac{kT}{q} \cdot ln \Big( \dfrac{NSD \cdot NBODY_i[N]}{n_i^2} \Big) \qquad (3.109)

ΦB=kTqln(NBODYi[N]ni)(3.110) \Phi_B = \dfrac{kT}{q} \cdot ln \Big( \dfrac{NBODY_i[N]}{n_i} \Big) \qquad (3.110)

ΔVth,temp=(KT1+KT1LLeff)(TTNOM1)(3.111) \Delta V_{th,temp} = \Big( KT1 + \dfrac{KT1L}{L_{eff}} \Big) \cdot \Big( \dfrac{T}{TNOM} - 1 \Big)\qquad (3.111)

ETA0(T)=ETA0[1TETA0(TTNOM)](3.112) ETA0(T) = ETA0 \cdot [1 - TETA0 \cdot (T - TNOM)] \qquad (3.112)

ETA0R(T)=ETA0R[1TETA0R(TTNOM)](3.113) ETA0R(T) = ETA0R \cdot [1 - TETA0R \cdot (T - TNOM)] \qquad (3.113)

μ0(T)=U0[L,N](TTNOM)UTEi+UTLi(TTNOM)(3.114) \mu_0(T) = U0[L, N] \cdot \Big( \dfrac{T}{TNOM} \Big)^{UTE_i} + UTL_i \cdot (T - TNOM) \qquad (3.114)

ETAMOB(T)=ETAMOBi[1+EMOBTi(TTNOM)](3.115) ETAMOB(T) = ETAMOB_i \cdot [1 + EMOBT_i \cdot (T - TNOM)] \qquad (3.115)

UA(T)=UA[L]+UA1i(TTNOM)(3.116) UA(T) = UA[L] + UA1_i \cdot (T - TNOM) \qquad (3.116)

UC(T)=UCi[1+UC1i(TTNOM)](3.117) UC(T) = UC_i \cdot [1 + UC1_i \cdot (T - TNOM)] \qquad (3.117)

UD(T)=UD[L](TTNOM)UD1i(3.118) UD(T) = UD[L] \cdot \Big( \dfrac{T}{TNOM} \Big)^{UD1_i} \qquad (3.118)

UCS(T)=UCSi(TTNOM)UCSTEi(3.119) UCS(T) = UCS_i \cdot \Big( \dfrac{T}{TNOM} \Big)^{UCSTE_i} \qquad (3.119)

VSAT(T)=VSAT[L,N][1AT(TTNOM)](3.120) VSAT(T) = VSAT[L, N] \cdot [1 - AT \cdot (T - TNOM)] \qquad (3.120)

VSAT1(T)=VSAT1[L,N][1AT(TTNOM)](3.121) VSAT1(T) = VSAT1[L, N] \cdot [1 - AT \cdot (T - TNOM)] \qquad (3.121)

VSAT1R(T)=VSAT1R[L,N][1AT(TTNOM)](3.122) VSAT1R(T) = VSAT1R[L, N] \cdot [1 - AT \cdot (T - TNOM)] \qquad (3.122)

VSATCV(T)=VSATCV[L][1ATCV(TTNOM)](3.123) VSATCV(T) = VSATCV[L] \cdot [1 - ATCV \cdot (T - TNOM)] \qquad (3.123)

PTWG(T)=PTWG[L][1PTWGT(TTNOM)](3.124) PTWG(T) = PTWG[L] \cdot [1 - PTWGT \cdot (T - TNOM)] \qquad (3.124)

PTWGR(T)=PTWGR[L][1PTWGT(TTNOM)](3.125) PTWGR(T) = PTWGR[L] \cdot [1 - PTWGT \cdot (T - TNOM)] \qquad (3.125)

{MEXP(T)=MEXP[L][1+TMEXP(TTNOM)]if ASYMMOD=0MEXPR(T)=MEXPR[L][1+TMEXPR(TTNOM)]if ASYMMOD=1 \begin{cases} MEXP(T) = MEXP[L] \cdot \Big[ 1 + TMEXP \cdot (T - TNOM) \Big] &\text{if } ASYMMOD = 0 \\ MEXPR(T) = MEXPR[L] \cdot \Big[ 1 + TMEXPR \cdot (T - TNOM) \Big] &\text{if } ASYMMOD = 1 \end{cases}

(3.126) (3.126)

BETA0(T)=BETA0i(TTNOM)IIT(3.127) BETA0(T) = BETA0_i \cdot \Big( \dfrac{T}{TNOM} \Big)^{IIT} \qquad (3.127)

SII0(T)=SII0i[1+TII(TTNOM1)](3.128) SII0(T) = SII0_i \cdot \Big[ 1 + TII \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big] \qquad (3.128)

K0(T)=K0i+K01i(TTNOM)(3.129) K0(T) = K0_i + K01_i \cdot (T - TNOM) \qquad (3.129)

K1(T)=K1i+K11i(TTNOM)(3.130) K1(T) = K1_i + K11_i \cdot (T - TNOM) \qquad (3.130)

K0SI(T)=K0SIi+K0SI1i(TTNOM)(3.131) K0SI(T) = K0SI_i + K0SI1_i \cdot (T - TNOM) \qquad (3.131)

K1SI(T)=K1SIi+K1SI1i(TTNOM)(3.132) K1SI(T) = K1SI_i + K1SI1_i \cdot (T - TNOM) \qquad (3.132)

K1SAT(T)=K1SATi+K1SAT1i(TTNOM)(3.133) K1SAT(T) = K1SAT_i + K1SAT1_i \cdot (T - TNOM) \qquad (3.133)

A1(T)=A1i+A11i(TTNOM)(3.134) A1(T) = A1_i + A11_i \cdot (T - TNOM) \qquad (3.134)

A2(T)=A2i+A21i(TTNOM)(3.135) A2(T) = A2_i + A21_i \cdot (T - TNOM) \qquad (3.135)

AIGBINV(T)=AIGBINVi+AIGBINV1i(TTNOM)(3.136) AIGBINV(T) = AIGBINV_i + AIGBINV1_i \cdot (T - TNOM) \qquad (3.136)

AIGBACC(T)=AIGBACCi+AIGBACC1i(TTNOM)(3.137) AIGBACC(T) = AIGBACC_i + AIGBACC1_i \cdot (T - TNOM) \qquad (3.137)

AIGC(T)=AIGCi+AIGC1i(TTNOM)(3.138) AIGC(T) = AIGC_i + AIGC1_i \cdot (T - TNOM) \qquad (3.138)

AIGS(T)=AIGSi+AIGS1i(TTNOM)(3.139) AIGS(T) = AIGS_i + AIGS1_i \cdot (T - TNOM) \qquad (3.139)

AIGD(T)=AIGDi+AIGD1i(TTNOM)(3.140) AIGD(T) = AIGD_i + AIGD1_i \cdot (T - TNOM) \qquad (3.140)

BGIDL(T)=BGIDLi[1+TGIDL(TTNOM)](3.141) BGIDL(T) = BGIDL_i \cdot [1 + TGIDL \cdot (T - TNOM)] \qquad (3.141)

BGISL(T)=BGISLi[1+TGIDL(TTNOM)](3.142) BGISL(T) = BGISL_i \cdot [1 + TGIDL \cdot (T - TNOM)] \qquad (3.142)

ALPHA0(T)=ALPHA0i+ALPHA01i(TTNOM)(3.143) ALPHA0(T) = ALPHA0_i + ALPHA01_i \cdot (T - TNOM) \qquad (3.143)

ALPHA1(T)=ALPHA1i+ALPHA11i(TTNOM)(3.144) ALPHA1(T) = ALPHA1_i + ALPHA11_i \cdot (T - TNOM) \qquad (3.144)

ALPHAII0(T)=ALPHAII0i+ALPHAII01i(TTNOM)(3.145) ALPHAII0(T) = ALPHAII0_i + ALPHAII01_i \cdot (T - TNOM) \qquad (3.145)

ALPHAII1(T)=ALPHAII1i+ALPHAII11i(TTNOM)(3.146) ALPHAII1(T) = ALPHAII1_i + ALPHAII11_i \cdot (T - TNOM) \qquad (3.146)

RDSWMIN(T)=RDSWMIN[1+PRT(TTNOM)](3.147) RDSWMIN(T) = RDSWMIN \cdot [1 + PRT \cdot (T - TNOM)] \qquad (3.147)

RDSW(T)=RDSW[L][1+PRT(TTNOM)](3.148) RDSW(T) = RDSW[L] \cdot [1 + PRT \cdot (T - TNOM)] \qquad (3.148)

RSWMIN(T)=RSWMIN[1+PRT(TTNOM)](3.149) RSWMIN(T) = RSWMIN \cdot [1 + PRT \cdot (T - TNOM)] \qquad (3.149)

RDWMIN(T)=RDWMIN[1+PRT(TTNOM)](3.150) RDWMIN(T) = RDWMIN \cdot [1 + PRT \cdot (T - TNOM)] \qquad (3.150)

RSW(T)=RSW[L][1+PRT(TTNOM)](3.151) RSW(T) = RSW[L] \cdot [1 + PRT \cdot (T - TNOM)] \qquad (3.151)

RDW(T)=RDW[L][1+PRT(TTNOM)](3.152) RDW(T) = RDW[L] \cdot [1 + PRT \cdot (T - TNOM)] \qquad (3.152)

RSDR(T)=RSDR[1+TRSDR(TTNOM)](3.153) RSDR(T) = RSDR \cdot [1 + TRSDR \cdot (T - TNOM)] \qquad (3.153)

RSDRR(T)=RSDRR[1+TRSDR(TTNOM)](3.154) RSDRR(T) = RSDRR \cdot [1 + TRSDR \cdot (T - TNOM)] \qquad (3.154)

RDDR(T)=RDDR[1+TRDDR(TTNOM)](3.155) RDDR(T) = RDDR \cdot [1 + TRDDR \cdot (T - TNOM)] \qquad (3.155)

RDDRR(T)=RDDRR[1+TRDDR(TTNOM)](3.156) RDDRR(T) = RDDRR \cdot [1 + TRDDR \cdot (T - TNOM)] \qquad (3.156)

Rs,geo(T)=Rs,geo[1+PRT(TTNOM)](3.157) R_{s,geo}(T) = R_{s,geo} \cdot [1 + PRT \cdot (T - TNOM)] \qquad (3.157)

Rd,geo(T)=Rd,geo[1+PRT(TTNOM)](3.158) R_{d,geo}(T) = R_{d,geo} \cdot [1 + PRT \cdot (T - TNOM)] \qquad (3.158)

Igtemp=(TTNOM)IGTi(3.159) I_{gtemp} = \Big( \dfrac{T}{TNOM} \Big)^{IGT_i} \qquad (3.159)

T3s=exp[1NJS(qEg,TNOMkTNOMqEgkT+XTISln(TTNOM))](3.160) T_{3s} = exp \Big[ \dfrac{1}{NJS} \cdot \Big( \dfrac{q E_{g,TNOM}}{k \cdot TNOM} - \dfrac{q E_g}{k T} + XTIS \cdot ln \Big( \dfrac{T}{TNOM} \Big) \Big) \Big] \qquad (3.160)

Jss(T)=JSST3s(3.161) J_{ss}(T) = JSS \cdot T_{3s} \qquad (3.161)

Jssws(T)=JSWST3s(3.162) J_{ssws}(T) = JSWS \cdot T_{3s} \qquad (3.162)

Jsswgs(T)=JSWGST3s(3.163) J_{sswgs}(T) = JSWGS \cdot T_{3s} \qquad (3.163)

T3d=exp[1NJD(qEg,TNOMkTNOMqEgkT+XTIDln(TTNOM))](3.164) T_{3d} = exp \Big[ \dfrac{1}{NJD} \cdot \Big( \dfrac{q E_{g,TNOM}}{k \cdot TNOM} - \dfrac{q E_g}{k T} + XTID \cdot ln \Big( \dfrac{T}{TNOM} \Big) \Big) \Big] \qquad \qquad (3.164)

Jsd(T)=JSDT3d(3.165) J_{sd}(T) = JSD \cdot T_{3d} \qquad (3.165)

Jsswd(T)=JSWDT3d(3.166) J_{sswd}(T) = JSWD \cdot T_{3d} \qquad (3.166)

Jsswgd(T)=JSWGDT3d(3.167) J_{sswgd}(T) = JSWGD \cdot T_{3d} \qquad (3.167)

Jtss(T)=JTSSexp[(1kT/q)(Eg,TNOMXTSS(TTNOM1))](3.168) J_{tss}(T) = JTSS \cdot exp \Big[ \Big( \dfrac{1}{kT/q} \Big) \cdot \Big( E_{g,TNOM} \cdot XTSS \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big) \Big] \qquad (3.168)

Jtsd(T)=JTSDexp[(1kT/q)(Eg,TNOMXTSD(TTNOM1))](3.169) J_{tsd}(T) = JTSD \cdot exp \Big[ \Big( \dfrac{1}{kT/q} \Big) \cdot \Big( E_{g,TNOM} \cdot XTSD \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big) \Big] \qquad (3.169)

Jtssws(T)=JTSSWS×exp[(1kT/q)(Eg,TNOMXTSSWS(TTNOM1))] J_{tssws}(T) = JTSSWS \times exp \Big[ \Big( \dfrac{1}{kT/q} \Big) \cdot \Big( E_{g,TNOM} \cdot XTSSWS \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big) \Big]

(3.170) (3.170)

Jtsswd(T)=JTSSWD×exp[(1kT/q)(Eg,TNOMXTSSWD(TTNOM1))] J_{tsswd}(T) = JTSSWD \times exp \Big[ \Big( \dfrac{1}{kT/q} \Big) \cdot \Big( E_{g,TNOM} \cdot XTSSWD \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big) \Big]

(3.171) (3.171)

Jtsswgs(T)=JTSSWGS×(1+JTWEFF/Weff0)×exp[(1kT/q)(Eg,TNOMXTSSWGS(TTNOM1))] \begin{aligned} J_{tsswgs}(T) &= JTSSWGS \times \Big( 1 + \sqrt{JTWEFF/W_{eff0}} \Big) \\ &\times exp \Big[ \Big( \dfrac{1}{kT/q} \Big) \cdot \Big( E_{g,TNOM} \cdot XTSSWGS \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big) \Big] \end{aligned}

(3.172) (3.172)

Jtsswgd(T)=JTSSWGD×(1+JTWEFF/Weff0)×exp[(1kT/q)(Eg,TNOMXTSSWGD(TTNOM1))] \begin{aligned} J_{tsswgd}(T) &= JTSSWGD \times \Big( 1 + \sqrt{JTWEFF/W_{eff0}} \Big) \\ &\times exp \Big[ \Big( \dfrac{1}{kT/q} \Big) \cdot \Big( E_{g,TNOM} \cdot XTSSWGD \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big) \Big] \end{aligned}

(3.173) (3.173)

NJTS(T)=NJTS[1+TNJTS(TTNOM1)](3.174) NJTS(T) = NJTS \cdot \Big[ 1 + TNJTS \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big] \qquad (3.174)

NJTSD(T)=NJTSD[1+TNJTSD(TTNOM1)](3.175) NJTSD(T) = NJTSD \cdot \Big[ 1 + TNJTSD \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big] \qquad (3.175)

NJTSSW(T)=NJTSSW[1+TNJTSSW(TTNOM1)](3.176) NJTSSW(T) = NJTSSW \cdot \Big[ 1 + TNJTSSW \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big] \qquad (3.176)

NJTSSWD(T)=NJTSSWD[1+TNJTSSWD(TTNOM1)](3.177) NJTSSWD(T) = NJTSSWD \cdot \Big[ 1 + TNJTSSWD \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big] \qquad (3.177)

NJTSSWG(T)=NJTSSW[1+TNJTSSWG(TTNOM1)](3.178) NJTSSWG(T) = NJTSSW \cdot \Big[ 1 + TNJTSSWG \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big] \qquad (3.178)

NJTSSWGD(T)=NJTSSWGD[1+TNJTSSWGD(TTNOM1)](3.179) NJTSSWGD(T) = NJTSSWGD \cdot \Big[ 1 + TNJTSSWGD \cdot \Big( \dfrac{T}{TNOM} - 1 \Big) \Big] \qquad (3.179)

CJS(T)=CJS[1+TCJ(TTNOM)](3.180) CJS(T) = CJS \cdot [1 + TCJ \cdot (T - TNOM)] \qquad (3.180)

CJD(T)=CJD[1+TCJ(TTNOM)](3.181) CJD(T) = CJD \cdot [1 + TCJ \cdot (T - TNOM)] \qquad (3.181)

CJSWS(T)=CJSWS[1+TCJSW(TTNOM)](3.182) CJSWS(T) = CJSWS \cdot [1 + TCJSW \cdot (T - TNOM)] \qquad (3.182)

CJSWD(T)=CJSWD[1+TCJSW(TTNOM)](3.183) CJSWD(T) = CJSWD \cdot [1 + TCJSW \cdot (T - TNOM)] \qquad (3.183)

CJSWGS(T)=CJSWGS[1+TCJSWG(TTNOM)](3.184) CJSWGS(T) = CJSWGS \cdot [1 + TCJSWG \cdot (T - TNOM)] \qquad (3.184)

CJSWGD(T)=CJSWGD[1+TCJSWG(TTNOM)](3.185) CJSWGD(T) = CJSWGD \cdot [1 + TCJSWG \cdot (T - TNOM)] \qquad (3.185)

PBS(T)=PBS(TNOM)TPB(TTNOM)(3.186) PBS(T) = PBS(TNOM) - TPB \cdot (T - TNOM) \qquad (3.186)

PBD(T)=PBD(TNOM)TPB(TTNOM)(3.187) PBD(T) = PBD(TNOM) - TPB \cdot (T - TNOM) \qquad (3.187)

PBSWS(T)=PBSWS(TNOM)TPBSW(TTNOM)(3.188) PBSWS(T) = PBSWS(TNOM) - TPBSW \cdot (T - TNOM) \qquad (3.188)

PBSWD(T)=PBSWD(TNOM)TPBSW(TTNOM)(3.189) PBSWD(T) = PBSWD(TNOM) - TPBSW \cdot (T - TNOM) \qquad (3.189)

PBSWGS(T)=PBSWGS(TNOM)TPBSWG(TTNOM)(3.190) PBSWGS(T) = PBSWGS(TNOM) - TPBSWG \cdot (T - TNOM) \qquad (3.190)

PBSWGD(T)=PBSWGD(TNOM)TPBSWG(TTNOM)(3.191) PBSWGD(T) = PBSWGD(TNOM) - TPBSWG \cdot (T - TNOM) \qquad (3.191)

results matching ""

    No results matching ""