3.17.2 Gate-to-Channel Current

Igc I_{gc} is calculated only for IGCMOD=1 IGCMOD = 1 .

A={4.97232×107for NMOS3.42536×107for PMOS(3.526) A = \begin{cases} 4.97232 \times 10^{-7} &\text{for } NMOS \\ 3.42536 \times 10^{-7} &\text{for } PMOS \end{cases} \qquad (3.526)

B={7.45669×1011for NMOS1.16645×1012for PMOS(3.527) B = \begin{cases} 7.45669 \times 10^{11} &\text{for } NMOS \\ 1.16645 \times 10^{12} &\text{for } PMOS \end{cases} \qquad (3.527)

T0=qia(Vge0.5Vdsx+0.5Ves+0.5Ved)(3.528) T_0 = q_{ia} \cdot (V_{ge} - 0.5 \cdot V_{dsx} + 0.5 \cdot V_{es} + 0.5 \cdot V_{ed}) \qquad (3.528)

Igc0=Weff0LeffATox,ratioIgtempNFINtotalT0×exp[BTOXG(AIGC(T)BIGCiqia)(1+CIGCiqia)](3.529) \begin{aligned} I_{gc0} &= W_{eff0} \cdot L_{eff} \cdot A \cdot T_{ox,ratio} \cdot I_{gtemp} \cdot NFIN_{total} \cdot T_0 \\ &\times exp \Big[ - B \cdot TOXG \cdot \Big( AIGC(T) - BIGC_i \cdot q_{ia} \Big) \cdot \Big( 1 + CIGC_i \cdot q_{ia} \Big) \Big] \end{aligned} \qquad (3.529)

Vdseffx=Vdseff2+0.010.1(3.530) V_{dseffx} = \sqrt{ {V_{dseff}}^2 + 0.01} - 0.1 \qquad (3.530)

Igcs=Igc0PIGCDiVdseffx+exp(PIGCDiVdseffx)1+104PIGCDi2Vdseffx2+2×104(3.531) I_{gcs} = I_{gc0} \cdot \dfrac{PIGCD_i \cdot V_{dseffx} + exp (PIGCD_i \cdot V_{dseffx}) - 1 + 10^{-4} }{ {PIGCD_i}^2 \cdot {V_{dseffx}}^2 + 2 \times 10^{-4}} \qquad (3.531)

Igcd=Igc01(PIGCDiVdseffx+1)exp(PIGCDiVdseffx)+1e4PIGCDi2Vdseffx2+2×104(3.532) I_{gcd} = I_{gc0} \cdot \dfrac{1 - (PIGCD_i \cdot V_{dseffx} + 1) \cdot exp (-PIGCD_i \cdot V_{dseffx}) + 1e^{-4} }{ {PIGCD_i}^2 \cdot {V_{dseffx}}^2 + 2 \times 10^{-4}} \qquad (3.532)

results matching ""

    No results matching ""