3.20.4 Two-Step Source Side Junction Capacitance

In some cases, the depletion edge in the channel/ substrate edge might transition into a region with a different doping (for example in a NMOS device: [n+ n^{+} (source), p1 p_1 (channel/substrate), p2 p_2 (substrate)], where p1 p_1 and p2 p_2 are regions with different doping levels). The following could be used to capture such a situation. In what follows, Vescn<0 V_{escn} < 0 can be interpreted as the transition voltage at which the depletion region switches from p1 p_1 to p2 p_2 region. It is calculated assuming parameters SJxxx (proportionality constant for second region) and MJxxx2 (gradient of second region's doping) are given, to give a continuous charge and capacitance.

For Ves<Vesc1 V_{es} < V_{esc1} ,

Qes1=Czbs[PBS(T)1(1Vesc1PBS(T))1MJS1MJS+SJSPbs21(1VesVesc1Pbs2)1MJS21MJS2](3.593) \begin{aligned} Q_{es1} = C_{zbs} \cdot &\Bigg[ PBS(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{esc1}}{PBS(T)} \Big)^{1 - MJS} }{1 - MJS} + \\ & SJS \cdot P_{bs2} \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{es} - V_{esc1}}{P_{bs2}} \Big)^{1 - MJS2}}{1 - MJS2} \Bigg] \end{aligned} \qquad (3.593)

Else use the Qes1 Q_{es1} of single junction above for Ves>Vesc1 V_{es} > V_{esc1} , where

Vesc1=PBS(T)[1(1SJS)1MJS](3.594) V_{esc1} = PBS(T) \cdot \Big[ 1 - \Big( \dfrac{1}{SJS} \Big)^{\frac{1}{MJS}} \Big] \qquad (3.594)

Pbs2=PBS(T)SJSMJS2MJS(1Vesc1PBS(T))1MJS(3.595) P_{bs2} = \dfrac{PBS(T) \cdot SJS \cdot MJS2}{MJS \cdot \Big( 1 - \dfrac{V_{esc1}}{PBS(T)} \Big)^{-1 - MJS}} \qquad (3.595)

For Ves<Vesc2 V_{es} < V_{esc2} ,

Qes2=Czbssw[PBSWS(T)1(1Vesc2PBSWS(T))1MJSWS1MJSWS+SJSWSPbsws21(1VesVesc2Pbsws2)1MJSWS21MJSWS2](3.596) \begin{aligned} Q_{es2} = C_{zbssw} \cdot &\Bigg[ PBSWS(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{esc2}}{PBSWS(T)} \Big)^{1 - MJSWS} }{1 - MJSWS} + \\ & SJSWS \cdot P_{bsws2} \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{es} - V_{esc2}}{P_{bsws2}} \Big)^{1 - MJSWS2}}{1 - MJSWS2} \Bigg] \end{aligned} \qquad (3.596)

Else use the Qes2 Q_{es2} of single junction above for Ves>Vesc2 V_{es} > V_{esc2} , where

Vesc2=PBSWS(T)[1(1SJSWS)1MJSWS](3.597) V_{esc2} = PBSWS(T) \cdot \Big[ 1 - \Big( \dfrac{1}{SJSWS} \Big)^{\frac{1}{MJSWS}} \Big] \qquad (3.597)

Pbsws2=PBSWS(T)SJSWSMJSWS2MJSWS(1Vesc2PBSWS(T))1MJSWS(3.598) P_{bsws2} = \dfrac{PBSWS(T) \cdot SJSWS \cdot MJSWS2}{MJSWS \cdot \Big( 1 - \dfrac{V_{esc2}}{PBSWS(T)} \Big)^{-1 - MJSWS}} \qquad (3.598)

For Ves<Vesc3 V_{es} < V_{esc3} ,

Qes3=Czbsswg[PBSWGS(T)1(1Vesc3PBSWGS(T))1MJSWGS1MJSWGS+SJSWGSPbswgs21(1VesVesc3Pbswgs2)1MJSWGS21MJSWGS2](3.599) \begin{aligned} Q_{es3} = C_{zbsswg} \cdot &\Bigg[ PBSWGS(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{esc3}}{PBSWGS(T)} \Big)^{1 - MJSWGS} }{1 - MJSWGS} + \\ & SJSWGS \cdot P_{bswgs2} \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{es} - V_{esc3}}{P_{bswgs2}} \Big)^{1 - MJSWGS2}}{1 - MJSWGS2} \Bigg] \end{aligned} \qquad (3.599)

Else use the Qes3 Q_{es3} of single junction above for Ves>Vesc3 V_{es} > V_{esc3} , where

Vesc3=PBSWGS(T)[1(1SJSWGS)1MJSWGS](3.600) V_{esc3} = PBSWGS(T) \cdot \Big[ 1 - \Big( \dfrac{1}{SJSWGS} \Big)^{\frac{1}{MJSWGS}} \Big] \qquad (3.600)

Pbswgs2=PBSWGS(T)SJSWGSMJSWGS2MJSWGS(1Vesc3PBSWGS(T))1MJSWGS(3.601) P_{bswgs2} = \dfrac{PBSWGS(T) \cdot SJSWGS \cdot MJSWGS2}{MJSWGS \cdot \Big( 1 - \dfrac{V_{esc3}}{PBSWGS(T)} \Big)^{-1 - MJSWGS}} \qquad (3.601)

results matching ""

    No results matching ""