3.3.3 Vth Roll-Off, DIBL, and Subthreshold Slope Degradation

The DITS effect is taken into account through the parameter ΘDITS \Theta_{DITS} . The threshold voltage takes this effect into account through the parameter ΔVth,DIBL \Delta V_{th,DIBL} . In the equations shown below, ΘSW \Theta_{SW} , ΘSS \Theta_{SS} , ΘSCE \Theta_{SCE} , ΘDIBL \Theta_{DIBL} and ΘDITS \Theta_{DITS} are model parameters in the code as THETA_SW THETA\_SW , THETA_SS THETA\_SS , THETA_SCE THETA\_SCE , THETA_DIBL THETA\_DIBL and THETA_DITS THETA\_DITS , respectively.

ψst=0.4+PHINi+ϕB(3.245) \psi_{st} = 0.4 + PHIN_i + \phi_B \qquad (3.245)

ΘSW=0.5cosh(DVT1SSiLeffλ)1(3.246) \Theta_{SW} = \dfrac{0.5}{cosh \Big( DVT1SS_i \cdot \dfrac{L_{eff}}{\lambda} \Big) - 1} \qquad (3.246)

Cdsc=ΘSW(CDSC[N]+CDSCDaVdsx)(3.247) C_{dsc} = \Theta_{SW} \cdot (CDSC[N] + CDSCD_a \cdot V_{dsx}) \qquad (3.247)

n={ΘSS(1+CITi+Cdsc(2Csi)//Cox)if GEOMOD3ΘSS(1+CITi+CdscCox)if GEOMOD=3(3.248) n = \begin{cases} \Theta_{SS} \cdot \Bigg( 1 + \dfrac{CIT_i + C_{dsc}}{(2 C_{si}) // C_{ox}} \Bigg) &\text{if } GEOMOD \ne 3 \\ \Theta_{SS} \cdot \Bigg( 1 + \dfrac{CIT_i + C_{dsc}}{C_{ox}} \Bigg) &\text{if } GEOMOD = 3 \end{cases} \qquad (3.248)

ΘSCE=0.5cosh(DVT1iLeffλ)1(3.249) \Theta_{SCE} = - \dfrac{0.5}{cosh \Big( DVT1_i \cdot \dfrac{L_{eff}}{\lambda} \Big) - 1} \qquad (3.249)

ΔVth,SCE=ΘSCEDVT0i(Vbiψst)(3.250) \Delta V_{th,SCE} = \Theta_{SCE} \cdot DVT0_i \cdot (V_{bi} - \psi_{st}) \qquad (3.250)

ΘDIBL=0.5cosh(DSUBiLeffλ)1(3.251) \Theta_{DIBL} = - \dfrac{0.5}{cosh \Big( DSUB_i \cdot \dfrac{L_{eff}}{\lambda} \Big) - 1} \qquad (3.251)

ΘDITS=1.01.0+DVTP2[cosh(DSUBiLeffλ)2.0] \Theta_{DITS} = \dfrac{1.0}{ 1.0 + DVTP2 \cdot \Big[ cosh \Big( DSUB_i \cdot \dfrac{L_{eff}}{\lambda} \Big) - 2.0 \Big] }

(3.252) (3.252)

ΔVth,DIBL=ΘDIBLETA0iVdsx+ΘDITSDVTP0VdsxDVTP1(3.253) \Delta V_{th,DIBL} = \Theta_{DIBL} \cdot ETA0_i \cdot V_{dsx} + \Theta_{DITS} \cdot DVTP0 \cdot {V_{dsx}}^{DVTP1} \qquad (3.253)

ΔVth,RSCE=K1RSCEi(1+LPE0iLeff1)ψst(3.254) \Delta V_{th,RSCE} = K1RSCE_i \cdot \Bigg( \sqrt{1 + \dfrac{LPE0_i}{L_{eff}}} - 1 \Bigg) \cdot \sqrt{\psi_{st}} \qquad (3.254)

ΔVth,all=ΔVth,SCE+ΔVth,DIBL+ΔVth,RSCE+ΔVth,temp(3.255) \Delta V_{th,all} = \Delta V_{th,SCE} + \Delta V_{th,DIBL} + \Delta V_{th,RSCE} + \Delta V_{th,temp} \qquad (3.255)

Vgsfb=VgsΔϕΔVth,allDVTSHIFT(3.256) V_{gsfb} = V_{gs} - \Delta \phi - \Delta V_{th,all} - DVTSHIFT \qquad (3.256)

BSIM-CMG provides an option to use ΘSW \Theta_{SW} , ΘSS \Theta_{SS} , ΘDIBL \Theta_{DIBL} and ΘDITS \Theta_{DITS} as model parameters directly.

results matching ""

    No results matching ""