3.20.5 Drain Side Junction Capacitance

Bias-independent calculations:

Czbd=CJD(T)ADEJ(3.602) C_{zbd} = CJD(T) \cdot ADEJ \qquad (3.602)

Czbdsw=CJSWD(T)PDEJ(3.603) C_{zbdsw} = CJSWD(T) \cdot PDEJ \qquad (3.603)

Czbdswg=CJSWGD(T)TFINNFINtotal(3.604) C_{zbdswg} = CJSWGD(T) \cdot TFIN \cdot NFIN_{total} \qquad (3.604)

Bias-dependent calculations:

Qed1={CzbdPBD(T)1(1VedPBD(T))1MJD1MJD Ved>0VedCzbd+Ved2MJDCzbd2PBD(T) Ved0(3.605) Q_{ed1} = \begin{cases} C_{zbd} \cdot PBD(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{ed}}{PBD(T)} \Big)^{1 - MJD}}{1 - MJD} &\text{ } V_{ed} > 0 \\ \\ V_{ed} \cdot C_{zbd} + {V_{ed}}^2 \cdot \dfrac{MJD \cdot C_{zbd}}{2 \cdot PBD(T)} &\text{ } V_{ed} \le 0 \end{cases} \qquad (3.605)

Qed2={CzbdswPBSWD(T)1(1VedPBSWD(T))1MJSWD1MJSWD Ved>0VedCzbdsw+Ved2MJSWDCzbdsw2PBSWD(T) Ved0 Q_{ed2} = \begin{cases} C_{zbdsw} \cdot PBSWD(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{ed}}{PBSWD(T)} \Big)^{1 - MJSWD}}{1 - MJSWD} &\text{ } V_{ed} > 0 \\ \\ V_{ed} \cdot C_{zbdsw} + {V_{ed}}^2 \cdot \dfrac{MJSWD \cdot C_{zbdsw}}{2 \cdot PBSWD(T)} &\text{ } V_{ed} \le 0 \end{cases}

(3.606) (3.606)

Qed3={CzbdswgPBSWGD(T)1(1VedPBSWGD(T))1MJSWGD1MJSWGD Ved>0VedCzbdswg+Ved2MJSWGDCzbdswg2PBSWGD(T) Ved0 Q_{ed3} = \begin{cases} C_{zbdswg} \cdot PBSWGD(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{ed}}{PBSWGD(T)} \Big)^{1 - MJSWGD}}{1 - MJSWGD} &\text{ } V_{ed} > 0 \\ \\ V_{ed} \cdot C_{zbdswg} + {V_{ed}}^2 \cdot \dfrac{MJSWGD \cdot C_{zbdswg}}{2 \cdot PBSWGD(T)} &\text{ } V_{ed} \le 0 \end{cases}

(3.607) (3.607)

Qed=Qed1+Qed2+Qed3(3.608) Q_{ed} = Q_{ed1} + Q_{ed2} + Q_{ed3} \qquad (3.608)

results matching ""

    No results matching ""