3.20.3 Source Side Junction Capacitance

Bias-independent calculations:

Czbs=CJS(T)ASEJ(3.586) C_{zbs} = CJS(T) \cdot ASEJ \qquad (3.586)

Czbssw=CJSWS(T)PSEJ(3.587) C_{zbssw} = CJSWS(T) \cdot PSEJ \qquad (3.587)

Czbsswg=CJSWGS(T)TFINNFINtotal(3.588) C_{zbsswg} = CJSWGS(T) \cdot TFIN \cdot NFIN_{total} \qquad (3.588)

Bias-dependent calculations:

Qes1={CzbsPBS(T)1(1VesPBS(T))1MJS1MJS Ves>0VesCzbs+Ves2MJSCzbs2PBS(T) Ves0(3.589) Q_{es1} = \begin{cases} C_{zbs} \cdot PBS(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{es}}{PBS(T)} \Big)^{1 - MJS}}{1 - MJS} &\text{ } V_{es} > 0 \\ \\ V_{es} \cdot C_{zbs} + {V_{es}}^2 \cdot \dfrac{MJS \cdot C_{zbs}}{2 \cdot PBS(T)} &\text{ } V_{es} \le 0 \end{cases} \qquad (3.589)

Qes2={CzbsswPBSWS(T)1(1VesPBSWS(T))1MJSWS1MJSWS Ves>0VesCzbssw+Ves2MJSWSCzbssw2PBSWS(T) Ves0 Q_{es2} = \begin{cases} C_{zbssw} \cdot PBSWS(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{es}}{PBSWS(T)} \Big)^{1 - MJSWS}}{1 - MJSWS} &\text{ } V_{es} > 0 \\ \\ V_{es} \cdot C_{zbssw} + {V_{es}}^2 \cdot \dfrac{MJSWS \cdot C_{zbssw}}{2 \cdot PBSWS(T)} &\text{ } V_{es} \le 0 \end{cases}

(3.590) (3.590)

Qes3={CzbsswgPBSWGS(T)1(1VesPBSWGS(T))1MJSWGS1MJSWGS Ves>0VesCzbsswg+Ves2MJSWGSCzbsswg2PBSWGS(T) Ves0 Q_{es3} = \begin{cases} C_{zbsswg} \cdot PBSWGS(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{es}}{PBSWGS(T)} \Big)^{1 - MJSWGS}}{1 - MJSWGS} &\text{ } V_{es} > 0 \\ \\ V_{es} \cdot C_{zbsswg} + {V_{es}}^2 \cdot \dfrac{MJSWGS \cdot C_{zbsswg}}{2 \cdot PBSWGS(T)} &\text{ } V_{es} \le 0 \end{cases}

(3.591) (3.591)

Qes=Qes1+Qes2+Qes3(3.592) Q_{es} = Q_{es1} + Q_{es2} + Q_{es3} \qquad (3.592)

results matching ""

    No results matching ""