3.20.1 Source Side Junction Current

Bias-independent calculations:

The bias-independent source side junction current, Isbs I_{sbs} , is determined as shown below:

Isbs=ASEJJss(T)+PSEJJsws(T)+TFINNFINtotalJswgs(T)(3.547) I_{sbs} = ASEJ \cdot J_{ss}(T) + PSEJ \cdot J_{sws}(T) + TFIN \cdot NFIN_{total} \cdot J_{swgs}(T) \qquad (3.547)

NVtms=kTqNJS(3.548) NV_{tms} = \dfrac{kT}{q} \cdot NJS \qquad (3.548)

XExpBVS=exp(BVSNVtms)XJBVS(3.549) XExpBVS = exp \Bigg( - \dfrac{BVS}{NV_{tms}} \Bigg) \cdot XJBVS \qquad (3.549)

Tb=1+IJTHSFWDIsbsXExpBVS(3.550) T_b = 1 + \dfrac{IJTHSFWD}{I_{sbs}} - XExpBVS \qquad (3.550)

VjsmFwd=NVtmsln(Tb+Tb2+4XExpBVS2)(3.551) V_{jsmFwd} = NV_{tms} \cdot ln \Bigg( \dfrac{T_b + \sqrt{ {T_b}^2 + 4 \cdot XExpBVS}}{2} \Bigg) \qquad (3.551)

T0=exp(VjsmFwdNVtms)(3.552) T_0 = exp \Bigg( \dfrac{V_{jsmFwd}}{NV_{tms}} \Bigg) \qquad (3.552)

IVjsmFwd=Isbs(T0XExpBVST0+XExpBVS1)(3.553) IV_{jsmFwd} = I_{sbs} \Bigg( T_0 - \dfrac{XExpBVS}{T_0} + XExpBVS - 1 \Bigg) \qquad (3.553)

SslpFwd=IsbsNVtms(T0+XExpBVST0)(3.554) S_{slpFwd} = \dfrac{I_{sbs}}{NV_{tms}} \cdot \Bigg( T_0 + \dfrac{XExpBVS}{T_0} \Bigg) \qquad (3.554)

VjsmRev=BVSNVtmsln[1XJBVS(IJTHSREVIsbs1)](3.555) V_{jsmRev} = -BVS - NV_{tms} \cdot ln \Bigg[ \dfrac{1}{XJBVS} \cdot \Bigg( \dfrac{IJTHSREV}{I_{sbs}} - 1 \Bigg) \Bigg] \qquad (3.555)

T1=XJBVSexp(BVS+VjsmRevNVtms)(3.556) T_1 = XJBVS \cdot exp \Bigg( - \dfrac{BVS + V_{jsmRev}}{NV_{tms}} \Bigg) \qquad (3.556)

IVjsmRev=Isbs(1+T1)(3.557) IV_{jsmRev} = I_{sbs} \cdot (1 + T_1) \qquad (3.557)

SslpRev=IsbsT1NVtms(3.558) S_{slpRev} = -I_{sbs} \cdot \dfrac{T_1}{NV_{tms}} \qquad (3.558)


Bias-dependent calculations:

The bias dependent source side junction current, Ies I_{es} , is determined as shown below:

If Ves<VjsmRev V_{es} < V_{jsmRev} ,

Ies=[exp(VesNVtms)1][IVjsmRev+SslpRev(VesVjsmRev)](3.560) I_{es} = \Bigg[ exp \Bigg( \dfrac{V_{es}}{NV_{tms}} \Bigg) - 1 \Bigg] \cdot \Big[ IV_{jsmRev} + S_{slpRev} \cdot (V_{es} - V_{jsmRev}) \Big] \qquad (3.560)

Else if VjsmRevVesVjsmFwd V_{jsmRev} \le V_{es} \le V_{jsmFwd} ,

Ies=Isbs[exp(VesNVtms)+XExpBVS1XJBVSexp(BVS+VesNVtms)] I_{es} = I_{sbs} \cdot \Bigg[ exp \Bigg( \dfrac{V_{es}}{NV_{tms}} \Bigg) + XExpBVS - 1 - XJBVS \cdot exp \Bigg( - \dfrac{BVS + V_{es}}{NV_{tms}} \Bigg) \Bigg]

(3.561) (3.561)

Else Ves>VjsmFwd V_{es} > V_{jsmFwd} ,

Ies=IVjsmFwd+SslpFwd(VesVjsmFwd)(3.562) I_{es} = IV_{jsmFwd} + S_{slpFwd} \cdot (V_{es} - V_{jsmFwd}) \qquad (3.562)

Including source side junction tunneling current:

Ies1=ASEJJtss(T)×[exp(Ves/(kTNOM/q)/NJTS(T)×VTSSmax(VTSSVes,VTSS103))1](3.563) \begin{aligned} I_{es1} &= ASEJ \cdot J_{tss}(T) \times \\ & \Bigg[ exp \Bigg( \dfrac{-V_{es} / (k \cdot TNOM / q) / NJTS(T) \times VTSS}{max(VTSS - V_{es}, VTSS \cdot 10^{-3} )} \Bigg) - 1 \Bigg] \end{aligned} \qquad (3.563)

Ies2=PSEJJtssws(T)×[exp(Ves/(kTNOM/q)/NJTSSW(T)×VTSSWSmax(VTSSWSVes,VTSSWS103))1](3.564) \begin{aligned} I_{es2} &= PSEJ \cdot J_{tssws}(T) \times \\ & \Bigg[ exp \Bigg( \dfrac{-V_{es} / (k \cdot TNOM / q) / NJTSSW(T) \times VTSSWS}{max(VTSSWS - V_{es}, VTSSWS \cdot 10^{-3} )} \Bigg) - 1 \Bigg] \end{aligned} \qquad (3.564)

Ies3=TFINNFINtotalJtsswgs(T)×[exp(Ves/(kTNOM/q)/NJTSSWG(T)×VTSSWGSmax(VTSSWGSVes,VTSSWGS103))1](3.565) \begin{aligned} I_{es3} &= TFIN \cdot NFIN_{total} \cdot J_{tsswgs}(T) \times \\ & \Bigg[ exp \Bigg( \dfrac{-V_{es} / (k \cdot TNOM / q) / NJTSSWG(T) \times VTSSWGS}{max(VTSSWGS - V_{es}, VTSSWGS \cdot 10^{-3} )} \Bigg) - 1 \Bigg] \end{aligned} \qquad (3.565)

Ies=Ies(Ies1+Ies2+Ies3)(3.566) I_{es} = I_{es} - (I_{es1} + I_{es2} + I_{es3}) \qquad (3.566)

results matching ""

    No results matching ""