3.5.1 Drain Saturation Voltage Calculations

If BULKMOD=0 BULKMOD = 0

Dmobs=1+UA(T)(Eeffs)EU+UD(T)[12(1+qis1e2/Cox)]UCS(T) D_{mobs} = 1 + UA(T) \cdot (E_{effs})^{EU} + \dfrac{UD(T)}{ \Bigg[ \dfrac{1}{2} \cdot \Bigg( 1 + \dfrac{q_{is}}{1e^{-2} / C_{ox} } \Bigg) \Bigg]^{UCS(T)} }

If BULKMOD=1 BULKMOD = 1

Dmobs=1+(UA(T)+UC(T)Veseff)(Eeffs)EU+UD(T)[12(1+qis1e2/Cox)]UCS(T) D_{mobs} = 1 + (UA(T) + UC(T) \cdot V_{eseff}) \cdot (E_{effs})^{EU} + \dfrac{UD(T)}{ \Bigg[ \dfrac{1}{2} \cdot \Bigg( 1 + \dfrac{q_{is}}{1e^{-2} / C_{ox} } \Bigg) \Bigg]^{UCS(T)} }

(3.304) (3.304)


Dmobs=DmobsU0MULT(3.305) D_{mobs} = \dfrac{D_{mobs}}{U0MULT} \qquad (3.305)


If RDSMOD=0 RDSMOD = 0 then

Rds,s=1[Weff0(μm)]WRi(RDSWMIN(T)+RDSW(T)1+PRWGSiqis)(3.306) R_{ds,s} = \dfrac{1}{ \Big[ W_{eff0}(\mu m) \Big]^{WR_i}} \cdot \Bigg( RDSWMIN(T) + \dfrac{RDSW(T)}{1 + PRWGS_i \cdot q_{is}} \Bigg) \qquad (3.306)

If RDSMOD=1 RDSMOD = 1 then

Rds,s=0(3.307) R_{ds,s} = 0 \qquad (3.307)

If RDSMOD=2 RDSMOD = 2 then

Rds,s=1[Weff0(μm)]WRi(RSgeo+RDgeo+RDSWMIN(T)+RDSW(T)1+PRWGSiqis)(3.308) R_{ds,s} = \dfrac{1}{ \Big[ W_{eff0}(\mu m) \Big]^{WR_i}} \cdot \Bigg( RS_{geo} + RD_{geo} + RDSWMIN(T) + \dfrac{RDSW(T)}{1 + PRWGS_i \cdot q_{is}} \Bigg) \qquad (3.308)


Esat=2VSAT(T)μ0(T)/Dmobs(3.309) E_{sat} = \dfrac{2 \cdot VSAT(T)}{\mu_0 (T) / D_{mobs}} \qquad (3.309)

EsatL=EsatLeff(3.310) E_{satL} = E_{sat} \cdot L_{eff} \qquad (3.310)

Here, RSgeo RS_{geo} and RDgeo RD_{geo} are geometry dependent (bias indepedent) part of source and drain resistances. In RDSMOD=2 RDSMOD = 2 they are included in Rds,s R_{ds,s} calculation and no extra node is created. See Section 3.15 for details.

If Rds,s=0 R_{ds,s} = 0 then

Vdsat=EsatLKSATIVi(Vgsfbeffψs+2kTq)EsatL+KSATIVi(Vgsfbeffψs+2kTq)(3.311) V_{dsat} = \dfrac{E_{satL} \cdot KSATIV_i \cdot \Big( V_{gsfbeff} - \psi_s + 2 \frac{kT}{q} \Big)}{E_{satL} + KSATIV_i \cdot \Big( V_{gsfbeff} - \psi_s + 2 \frac{kT}{q} \Big)} \qquad (3.311)

Else,

WVCox=Weff0VSAT(T)Cox(3.312) WVC_{ox} = W_{eff0} \cdot VSAT(T) \cdot C_{ox} \qquad (3.312)

Ta=2WVCoxRds,s(3.313) T_a = 2 \cdot WVC_{ox} \cdot R_{ds,s} \qquad (3.313)

Tb=KSATIVi(Vgsfbeffψs+2kTq)(1+3WVCoxRds,s)+EsatL(3.314) T_b = KSATIV_i \cdot \Big( V_{gsfbeff} - \psi_s + 2 \frac{kT}{q} \Big) \cdot (1 + 3 \cdot WVC_{ox} \cdot R_{ds,s}) + E_{satL} \qquad (3.314)

Tc=KSATIVi(Vgsfbeffψs+2kTq)×[EsatL+TaKSATIVi(Vgsfbeffψs+2kTq)](3.315) \begin{aligned} T_c &= KSATIV_i \cdot \Big( V_{gsfbeff} - \psi_s + 2 \frac{kT}{q} \Big) \\ &\times \Big[ E_{satL} + T_a \cdot KSATIV_i \cdot \Big( V_{gsfbeff} - \psi_s + 2 \frac{kT}{q} \Big) \Big] \qquad (3.315) \end{aligned}

Vdsat=TbTb22TaTcTa(3.316) V_{dsat} = \dfrac{T_b - \sqrt{T_b^2 - 2 T_a T_c}}{T_a} \qquad (3.316)

Vdseff=Vds[1+(VdsVdsat)MEXP(T)]1/MEXP(T)(3.317) V_{dseff} = \dfrac{V_{ds}}{ \Bigg[ 1 + \Big( \dfrac{V_{ds}}{V_{dsat}} \Big)^{MEXP(T)} \Bigg]^{1/MEXP(T)}} \qquad (3.317)

results matching ""

    No results matching ""