3.15.1 Parasitic Resistance Model

The total parasitic resistance at the source/drain terminal consists of two parts: (a) bias-independent and (b) bias-dependent. BSIM-CMG offers three different options to model parasitic resistance with variations on the way the bias dependent and bias independent parts of the parasitic resistance are handled. These options can be exercised by the switch RDSMOD RDSMOD as described below:


For RDSMOD=0 RDSMOD = 0 ,

Bias-dependent part of parasitic resistance is internal to the model, while bias-independent part is external to the model. Additional nodes are created. This is same as BSIM3 model.

Rsource=Rs,geo(3.444) R_{source} = R_{s,geo} \qquad (3.444)

Rdrain=Rd,geo(3.445) R_{drain} = R_{d,geo} \qquad (3.445)

Rds=1NFINtotal×Weff0WRi(RDSWMIN(T)+RDSW(T)1+PRWGSiqia)(3.446) R_{ds} = \dfrac{1}{NFIN_{total} \times {W_{eff0}}^{WR_i}} \cdot \Bigg( RDSWMIN(T) + \dfrac{RDSW(T)}{1 + PRWGS_i \cdot q_{ia}} \Bigg) \qquad (3.446)

Dr=1+NFINtotalμ0(T)CoxWeffLeffids0ΔqiRdsDvsatDmob D_r = 1 + NFIN_{total} \cdot \mu_0(T) \cdot C_{ox} \cdot \dfrac{W_{eff}}{L_{eff}} \cdot \dfrac{i_{ds0}}{\Delta q_i} \cdot \dfrac{R_{ds}}{D_{vsat} \cdot D_{mob}}

Dr D_r goes into the denominator of the final Ids I_{ds} expression.


For RDSMOD=1 RDSMOD = 1 ,

Both bias-dependent and bias-independent parts of parasitic resistances are external to the model. The bias-dependent extension resistance model is adopted from BSIM4 [10]. Similar to BSIM4, this option in BSIM-CMG allow the source extension resistance Rs(V) R_s(V) and the drain extension resistance Rd(V) R_d(V) to be external and asymmetric (i.e. Rs(V) R_s(V) and Rd(V) R_d(V) can be connected between the external and internal source and drain nodes, respectively; furthermore, Rs(V) R_s(V) does not have to be equal to Rd(V) R_d(V) ). This feature makes accurate RF CMOS simulation possible.

Vgs,eff=12[VgsVfbsd+(VgsVfbsd)2+0.1](3.447) V_{gs,eff} = \dfrac{1}{2} \Bigg[ V_{gs} - V_{fbsd} + \sqrt{(V_{gs} - V_{fbsd})^2 + 0.1} \Bigg] \qquad (3.447)

Vgd,eff=12[VgdVfbsd+(VgdVfbsd)2+0.1](3.448) V_{gd,eff} = \dfrac{1}{2} \Bigg[ V_{gd} - V_{fbsd} + \sqrt{(V_{gd} - V_{fbsd})^2 + 0.1} \Bigg] \qquad (3.448)

Vsi,s,eff=V(si,s)2+1.0e6(3.449) V_{si,s,eff} = \sqrt{V(si,s)^2 + 1.0e^{-6}} \qquad (3.449)

Rsw=RSW(T)(1+RSDRaVsi,s,effPRSDR)1+PRWGSiVgs,eff(3.450) R_{sw} = \dfrac{RSW(T) \cdot (1 + RSDR_a \cdot {V_{si,s,eff}}^{PRSDR})}{1 + PRWGS_i \cdot V_{gs,eff}} \qquad (3.450)

Rsource=1Weff0WRiNFINtotal(RSWMIN(T)+Rsw)+Rs,geo(3.451) R_{source} = \dfrac{1}{ { W_{eff0} }^{WR_i} \cdot NFIN_{total}} \cdot (RSWMIN(T) + R_{sw}) + R_{s,geo} \qquad (3.451)

Vdi,d,eff=V(di,d)2+1.0e6(3.452) V_{di,d,eff} = \sqrt{V(di,d)^2 + 1.0e^{-6}} \qquad (3.452)

Rdw=RDW(T)(1+RDDRaVdi,d,effPRDDR)1+PRWGDiVgd,eff(3.453) R_{dw} = \dfrac{RDW(T) \cdot (1 + RDDR_a \cdot {V_{di,d,eff}}^{PRDDR})}{1 + PRWGD_i \cdot V_{gd,eff}} \qquad (3.453)

Rdrain=1Weff0WRiNFINtotal(RDWMIN(T)+Rdw)+Rd,geo(3.454) R_{drain} = \dfrac{1}{ { W_{eff0} }^{WR_i} \cdot NFIN_{total}} \cdot (RDWMIN(T) + R_{dw}) + R_{d,geo} \qquad (3.454)

Dr=1.0(3.455) D_r = 1.0 \qquad (3.455)


For RDSMOD=2 RDSMOD = 2 ,

Both bias-dependent and bias-independent parts of parasitic resistances are internal to the model. This option assumes symmetric source/drain resistances. No additional nodes are created in this option.

Rsource=0.0(3.456) R_{source} = 0.0 \qquad (3.456)

Rdrain=0.0(3.457) R_{drain} = 0.0 \qquad (3.457)

Rds=1NFINtotal×Weff0WRi(Rs,geo+Rd,geo+RDSWMIN(T)+RDSW(T)1+PRWGSiqia) R_{ds} = \dfrac{1}{NFIN_{total} \times {W_{eff0}}^{WR_i}} \cdot \Bigg( R_{s,geo} + R_{d,geo} + RDSWMIN(T) + \dfrac{RDSW(T)}{1 + PRWGS_i \cdot q_{ia}} \Bigg)

(3.458) (3.458)

Dr=1+NFINtotalμ0(T)CoxWeffLeffids0ΔqiRdsDvsatDmob D_r = 1 + NFIN_{total} \cdot \mu_0(T) \cdot C_{ox} \cdot \dfrac{W_{eff}}{L_{eff}} \cdot \dfrac{i_{ds0}}{\Delta q_i} \cdot \dfrac{R_{ds}}{D_{vsat} \cdot D_{mob}}

Rs,geo R_{s,geo} and Rd,geo R_{d,geo} are the source and drain diffusion resistances, which we will describe as follows.


References

[10] BSIM4 model. Department of Electrical Engineering and Computer Science, UC Berkeley.

results matching ""

    No results matching ""