3.15.2.2 Diffusion Resistance Model for Variability Modeling

If RGEOMOD=1 RGEOMOD = 1 , a diffusion resistance model for variability modeling will be invoked. The physically derived model captures the complex dependences of resistance on the geometry of FinFETs.

RGEOMOD=1 RGEOMOD = 1 is derived based on the FinFET structure (single-fin or multi-fin with merged source/drain). Figure 1 shows the cross section of a double-gate FinFET with raised source/drain (RSD RSD ) along the source-drain direction. Lg L_g (gate length) and TOXP TOXP (physical oxide thickness, not shown in Fig. 1) are calculated in Section 3.1. A hard mask with thickness TMASK TMASK often exists on top of the fin. If TMASK=0 TMASK = 0 , the model will assume there is no hard mask and the dielectric thickness on top of the fin is TOXP TOXP (triple-gate FinFET). In the figure, LSP LSP is the spacer thickness, LRSD LRSD is the length of the raised source/drain, HFIN HFIN is the fin height, TGATE TGATE is the gate height, and HEPI HEPI is the height of the epitaxial silicon above the fin. These parameters are specified by the user.


Figure 1

Figure 1: Cross section of a raised source/drain double-gate FinFET and symbol definition


The resistivity of the raised source/drain can be specified with the parameter RHORSD RHORSD . If RHORSD RHORSD is not given the resistivity is calculated using the following expressions [11]:

μMAX={1417for NMOS470.5for PMOS(3.461) \mu_{MAX} = \begin{cases} 1417 &\text{for NMOS} \\ 470.5 &\text{for PMOS} \end{cases} \qquad (3.461)

μRSD={52.2+μMAX52.21+(NSD9.68×1022)0.68043.41+(3.41×1026NSD)2.0for NMOS44.9+μMAX44.91+(NSD2.23×1023)0.71929.01+(6.10×1026NSD)2.0for PMOS(3.462) \mu_{RSD} = \begin{cases} 52.2 + \dfrac{\mu_{MAX} - 52.2}{1 + \Big( \dfrac{NSD}{9.68 \times 10^{22}} \Big)^{0.680}} - \dfrac{43.4}{1 + \Big( \dfrac{3.41 \times 10^{26} }{NSD} \Big)^{2.0}} &\text{for NMOS} \\ \\ 44.9 + \dfrac{\mu_{MAX} - 44.9}{1 + \Big( \dfrac{NSD}{2.23 \times 10^{23}} \Big)^{0.719}} - \dfrac{29.0}{1 + \Big( \dfrac{6.10 \times 10^{26} }{NSD} \Big)^{2.0}} &\text{for PMOS} \end{cases} \qquad (3.462)

ρRSD=1qNSDμRSD(3.463) \rho_{RSD} = \dfrac{1}{q \cdot NSD \cdot \mu_{RSD}} \qquad (3.463)

where NSD NSD is the active doping concentration of the raised source/drain.

The diffusion resistance includes two components: the spreading resistance due to current spreading from the extension region into the raised source/drain (Rsp R_{sp} ) and the resistance of the raised source/drain region (Rcon R_{con} ).

The spreading resistance, Rsp R_{sp} is derived by assuming the current spreads at a constant angle θRSP \theta_{RSP} in the raised source/drain. Comparison with numerical simulation shows that θRSP \theta_{RSP} is around 55 degrees. The spreading resistance is given as a function of the cross sectional area of the raised source/drain (Arsd A_{rsd} ) and the effective fin area (Afin A_{fin} ):

Rsp=ρRSDcot(θrsp)πNFIN[1Afin2Arsd+AfinArsd2](3.464) R_{sp} = \dfrac{\rho_{RSD} \cdot cot(\theta_{rsp})}{\sqrt{\pi} \cdot NFIN} \cdot \Bigg[ \dfrac{1}{\sqrt{A_{fin}}} - \dfrac{2}{\sqrt{A_{rsd}}} + \sqrt{\dfrac{A_{fin}}{A_{rsd}^2}} \Bigg] \qquad (3.464)

Afin A_{fin} is given by

Afin={HFIN×TFINfor HEPI0(HFIN+HEPI)×TFINfor HEPI<0(3.465) A_{fin} = \begin{cases} HFIN \times TFIN &\text{for } HEPI \ge 0 \\ (HFIN + HEPI) \times TFIN &\text{for } HEPI < 0 \end{cases} \qquad (3.465)

Here HEPI<0 HEPI < 0 is the case where silicidation removes part of the silicon, forming a recessed source/drain (Fig. 2).


Figure 2

Figure 2: Lithography-defined FinFET with a smaller source/drain height compared to the fin height (silicide not shown).


The raised source drain cross sectional area (Arsd A_{rsd} ) is given by

Arsd={FPITCHHFIN+[TFIN+(FPITCHTFIN)CRATIO]HEPIfor HEPI0FPITCH(HFIN+HEPI)for HEPI<0(3.466) A_{rsd} = \begin{cases} FPITCH \cdot HFIN + \Big[ TFIN + \\ \qquad (FPITCH - TFIN) \cdot CRATIO \Big] \cdot HEPI &\text{for } HEPI \ge 0 \\ FPITCH \cdot (HFIN + HEPI) &\text{for } HEPI < 0 \end{cases} \qquad (3.466)

In the above formula, we have assumed a rectangular geometry for negative HEPI HEPI (Fig. 2) and the cross sectional area is simply the fin pitch times the final height of the source/drain. For a positive HEPI HEPI , we have considered a RSD RSD formed by selective epitaxial growth, in which case the RSD RSD may not be rectangular (e.g. Fig. 3). In calculating the cross sectional area, we take into account the non-rectangular corner through the parameter CRATIO CRATIO . CRATIO CRATIO is defined as the ratio of corner area filled with silicon to the total corner area. In the example given in Fig. 4, CRATIO CRATIO is 0.5.


Figure 3

Figure 3: FinFET with non-rectangular epi and top silicide


Figure 4

Figure 4: 2-D cross section of a FinFET with non-rectangular epi and top silicide


The calculation of the contact resistance (Rcon R_{con} ) is based on the transmission line model [12]. Rcon R_{con} is expressed as a function of the total area (Arsd,total A_{rsd,total} ) and the total perimeter (Prsd,total P_{rsd,total} ):

Rrsd,TML=ρRSDltArsd,totalcosh(α)+ηsinh(α)sinh(α)+ηcosh(α)(3.467) R_{rsd,TML} = \dfrac{\rho_{RSD} \cdot l_t}{A_{rsd,total}} \cdot \dfrac{cosh(\alpha) + \eta \cdot sinh(\alpha)}{sinh(\alpha) + \eta \cdot cosh(\alpha)} \qquad (3.467)

α=LRSDlt(3.468) \alpha = \dfrac{LRSD}{l_t} \qquad (3.468)

lt=RHOCArsd,totalρRSDPrsd,total(3.469) l_t = \sqrt{\dfrac{RHOC \cdot A_{rsd,total}}{\rho_{RSD} \cdot P_{rsd,total}}} \qquad (3.469)

where RHOC RHOC is the contact resistivity at the silicide/silicon interface. The total area and perimeter are given by

Arsd,total=Arsd×NFIN+ARSDEND(3.470) A_{rsd,total} = A_{rsd} \times NFIN + ARSDEND \qquad (3.470)

Prsd,total=(FPITCH+DELTAPRSD)×NFIN+PRSDEND(3.471) P_{rsd,total} = (FPITCH + DELTAPRSD) \times NFIN + PRSDEND \qquad (3.471)

DELTAPRSD DELTAPRSD is the per-fin increase in perimeter due to non-rectangular raised source/drains. ARSDEND ARSDEND and PRSDEND PRSDEND are introduced to model the additional cross-sectional area and the additional perimeter, respectively, at the two ends of a multi-fin FinFET.


Figure 5

Figure 5: FinFET with a non-rectangular epi and silicide on top and two ends.


SDTERM=1 SDTERM = 1 indicates the source/drain are terminated with silicide (Fig. 5), while SDTERM=0 SDTERM = 0 indicates they are not. η \eta is given by

η={ρRSDltRHOCfor SDTERM=10.0for SDTERM=0(3.472) \eta = \begin{cases} \dfrac{\rho_{RSD} \cdot l_t}{RHOC} &\text{for } SDTERM = 1 \\ \\ 0.0 &\text{for } SDTERM = 0 \end{cases} \qquad (3.472)

In the case of the recessed source/drain, a side component of the contact resistance must be modeled as well. It is given by

Rrsd,side=RHOCNFIN(HEPI)TFIN(3.473) R_{rsd,side} = \dfrac{RHOC}{NFIN \cdot (-HEPI) \cdot TFIN} \qquad (3.473)

Finally, the total diffusion resistance is given by

Rs,geo=Rd,geo=RrsdNF[RGEOA+RGEOB×TFIN+RGEOC×FPITCH+RGEOD×LRSD+RGEOE×HEPI] \begin{aligned} R_{s,geo} &= R_{d,geo} = \dfrac{R_{rsd}}{NF} \cdot \Big[ RGEOA + RGEOB \times TFIN + \\ &RGEOC \times FPITCH + RGEOD \times LRSD + RGEOE \times HEPI \Big] \end{aligned}

(3.474) (3.474)

where

Rrsd={Rrsd,TML+Rspfor HEPI0(Rrsd,TML+Rsp)×Rrsd,side(Rrsd,TML+Rsp)+Rrsd,sidefor HEPI<0(3.475) R_{rsd} = \begin{cases} R_{rsd,TML} + R_{sp} &\text{for } HEPI \ge 0 \\ \\ \dfrac{(R_{rsd,TML} + R_{sp}) \times R_{rsd,side}}{(R_{rsd,TML} + R_{sp}) + R_{rsd,side}} &\text{for } HEPI < 0 \end{cases} \qquad (3.475)

Fitting parameters RGEOA RGEOA , RGEOB RGEOB , RGEOC RGEOC , RGEOD RGEOD and RGEOE RGEOE are introduced for fitting flexibility.


References

[11] G. Masetti, M. Severi, and S. Solmi, "Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon," IEEE Transaction on Electron Devices, vol. 30, no. 7, pp. 764-769, July 1983.

[12] H. H. Berger, "Model for contacts to planar devices," Solid-State Electronics, vol. 15, pp. 145-158, 1972.

results matching ""

    No results matching ""