3.4.1 Quantum Mechanical Vt correction

QMFACTORi QMFACTOR_i is also a switch.

If GEOMOD3 GEOMOD \ne 3 then,

E0=2π22mxTFIN2(3.257) E_0 = \dfrac{\hbar^2 \pi^2}{2 m_x \cdot {TFIN}^2} \qquad (3.257)

E0=2π22mxTFIN2(3.258) E_0^{'} = \dfrac{\hbar^2 \pi^2}{2 m_x^{'} \cdot {TFIN}^2} \qquad (3.258)

E1=4E0(3.259) E_1 = 4 E_0 \qquad (3.259)

E1=4E0(3.260) E_1^{'} = 4 E_0^{'} \qquad (3.260)

γ=1+exp(E0E1kT)+gmdgmd[exp(E0E0kT)+exp(E0E1kT)](3.261) \gamma = 1 + exp \Big( \dfrac{E_0 - E_1}{kT} \Big) + \dfrac{g^{'} \cdot m_d^{'}}{g \cdot m_d} \cdot \Bigg[ exp \Big( \dfrac{E_0 - E_0^{'}}{kT} \Big) + exp \Big( \dfrac{E_0 - E_1^{'}}{kT} \Big) \Bigg] \qquad (3.261)

ΔVt,QM=QMFACTORi[E0qkTqln(gmdπ2NckTTFINγ)](3.262) \Delta V_{t, QM} = QMFACTOR_i \cdot \Bigg[ \dfrac{E_0}{q} - \dfrac{kT}{q} ln \Big( \dfrac{g \cdot m_d}{\pi \hbar^2 N_c} \cdot \dfrac{kT}{TFIN} \cdot \gamma \Big) \Bigg] \qquad (3.262)

If GEOMOD=3 GEOMOD = 3 then,

E0,QM=2(2.4048)22mxR2(3.263) E_{0,QM} = \dfrac{\hbar^2 (2.4048)^2 }{2 m_x \cdot R^2} \qquad (3.263)

ΔVt,QM=QMFACTORiE0,QMq(3.264) \Delta V_{t, QM} = QMFACTOR_i \cdot \dfrac{E_{0,QM}}{q} \qquad (3.264)

results matching ""

    No results matching ""