3.20.6 Two-Step Drain Side Junction Capacitance

Please refer to the description made for the source side.

For Ved<Vedc1 V_{ed} < V_{edc1} ,

Qed1=Czbd[PBD(T)1(1Vedc1PBD(T))1MJD1MJD+SJDPbd21(1VedVedc1Pbd2)1MJD21MJD2](3.609) \begin{aligned} Q_{ed1} = C_{zbd} \cdot &\Bigg[ PBD(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{edc1}}{PBD(T)} \Big)^{1 - MJD} }{1 - MJD} + \\ & SJD \cdot P_{bd2} \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{ed} - V_{edc1}}{P_{bd2}} \Big)^{1 - MJD2}}{1 - MJD2} \Bigg] \end{aligned} \qquad (3.609)

Else use the Qed1 Q_{ed1} of single junction above for Ved>Vedc1 V_{ed} > V_{edc1} , where

Vedc1=PBD(T)[1(1SJD)1MJD](3.610) V_{edc1} = PBD(T) \cdot \Big[ 1 - \Big( \dfrac{1}{SJD} \Big)^{\frac{1}{MJD}} \Big] \qquad (3.610)

Pbd2=PBD(T)SJDMJD2MJD(1Vedc1PBD(T))1MJD(3.611) P_{bd2} = \dfrac{PBD(T) \cdot SJD \cdot MJD2}{MJD \cdot \Big( 1 - \dfrac{V_{edc1}}{PBD(T)} \Big)^{-1 - MJD}} \qquad (3.611)

For Ved<Vedc2 V_{ed} < V_{edc2} ,

Qed2=Czbdsw[PBSWD(T)1(1Vedc2PBSWD(T))1MJSWD1MJSWD+SJSWDPbswd21(1VedVed2Pbswd2)1MJSWD21MJSWD2](3.612) \begin{aligned} Q_{ed2} = C_{zbdsw} \cdot &\Bigg[ PBSWD(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{edc2}}{PBSWD(T)} \Big)^{1 - MJSWD} }{1 - MJSWD} + \\ & SJSWD \cdot P_{bswd2} \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{ed} - V_{ed2}}{P_{bswd2}} \Big)^{1 - MJSWD2}}{1 - MJSWD2} \Bigg] \end{aligned} \qquad (3.612)

Else use the Qed2 Q_{ed2} of single junction above for Ved>Vedc2 V_{ed} > V_{edc2} , where

Vedc2=PBSWD(T)[1(1SJSWD)1MJSWD](3.613) V_{edc2} = PBSWD(T) \cdot \Big[ 1 - \Big( \dfrac{1}{SJSWD} \Big)^{\frac{1}{MJSWD}} \Big] \qquad (3.613)

Pbswd2=PBSWD(T)SJSWDMJSWD2MJSWD(1Vedc2PBSWD(T))1MJSWD(3.614) P_{bswd2} = \dfrac{PBSWD(T) \cdot SJSWD \cdot MJSWD2}{MJSWD \cdot \Big( 1 - \dfrac{V_{edc2}}{PBSWD(T)} \Big)^{-1 - MJSWD}} \qquad (3.614)

For Ved<Vedc3 V_{ed} < V_{edc3} ,

Qed3=Czbdswg[PBSWGD(T)1(1Vedc3PBSWGD(T))1MJSWGD1MJSWGD+SJSWGDPbswgd21(1VedVedc3Pbswgd2)1MJSWGD21MJSWGD2](3.615) \begin{aligned} Q_{ed3} = C_{zbdswg} \cdot &\Bigg[ PBSWGD(T) \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{edc3}}{PBSWGD(T)} \Big)^{1 - MJSWGD} }{1 - MJSWGD} + \\ & SJSWGD \cdot P_{bswgd2} \cdot \dfrac{1 - \Big( 1 - \dfrac{V_{ed} - V_{edc3}}{P_{bswgd2}} \Big)^{1 - MJSWGD2}}{1 - MJSWGD2} \Bigg] \end{aligned} \qquad (3.615)

Else use the Qed3 Q_{ed3} of single junction above for Ved>Vedc3 V_{ed} > V_{edc3} , where

Vedc3=PBSWGD(T)[1(1SJSWGD)1MJSWGD](3.616) V_{edc3} = PBSWGD(T) \cdot \Big[ 1 - \Big( \dfrac{1}{SJSWGD} \Big)^{\frac{1}{MJSWGD}} \Big] \qquad (3.616)

Pbswgd2=PBSWGD(T)SJSWGDMJSWGD2MJSWGD(1Vedc3PBSWGD(T))1MJSWGD(3.617) P_{bswgd2} = \dfrac{PBSWGD(T) \cdot SJSWGD \cdot MJSWGD2}{MJSWGD \cdot \Big( 1 - \dfrac{V_{edc3}}{PBSWGD(T)} \Big)^{-1 - MJSWGD}} \qquad (3.617)

results matching ""

    No results matching ""